Uses of Interface
org.hipparchus.clustering.Clusterable
-
Packages that use Clusterable Package Description org.hipparchus.clustering Clustering algorithms.org.hipparchus.clustering.evaluation Cluster evaluation methods. -
-
Uses of Clusterable in org.hipparchus.clustering
Classes in org.hipparchus.clustering with type parameters of type Clusterable Modifier and Type Class Description classCentroidCluster<T extends Clusterable>A Cluster used by centroid-based clustering algorithms.classCluster<T extends Clusterable>Cluster holding a set ofClusterablepoints.classClusterer<T extends Clusterable>Base class for clustering algorithms.classDBSCANClusterer<T extends Clusterable>DBSCAN (density-based spatial clustering of applications with noise) algorithm.classFuzzyKMeansClusterer<T extends Clusterable>Fuzzy K-Means clustering algorithm.classKMeansPlusPlusClusterer<T extends Clusterable>Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.classMultiKMeansPlusPlusClusterer<T extends Clusterable>A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution.Classes in org.hipparchus.clustering that implement Clusterable Modifier and Type Class Description classDoublePointA simple implementation ofClusterablefor points with double coordinates.Methods in org.hipparchus.clustering that return Clusterable Modifier and Type Method Description ClusterableCentroidCluster. getCenter()Get the point chosen to be the center of this cluster.Methods in org.hipparchus.clustering with parameters of type Clusterable Modifier and Type Method Description protected doubleClusterer. distance(Clusterable p1, Clusterable p2)Calculates the distance between twoClusterableinstances with the configuredDistanceMeasure.Constructors in org.hipparchus.clustering with parameters of type Clusterable Constructor Description CentroidCluster(Clusterable center)Build a cluster centered at a specified point. -
Uses of Clusterable in org.hipparchus.clustering.evaluation
Classes in org.hipparchus.clustering.evaluation with type parameters of type Clusterable Modifier and Type Class Description classClusterEvaluator<T extends Clusterable>Base class for cluster evaluation methods.classSumOfClusterVariances<T extends Clusterable>Computes the sum of intra-cluster distance variances according to the formula: \] score = \sum\limits_{i=1}^n \sigma_i^2 \] where n is the number of clusters and \( \sigma_i^2 \) is the variance of intra-cluster distances of cluster \( c_i \).Methods in org.hipparchus.clustering.evaluation that return Clusterable Modifier and Type Method Description protected ClusterableClusterEvaluator. centroidOf(Cluster<T> cluster)Computes the centroid for a cluster.Methods in org.hipparchus.clustering.evaluation with parameters of type Clusterable Modifier and Type Method Description protected doubleClusterEvaluator. distance(Clusterable p1, Clusterable p2)Calculates the distance between twoClusterableinstances with the configuredDistanceMeasure.
-