Class AbstractSQPOptimizer
- java.lang.Object
-
- org.hipparchus.optim.BaseOptimizer<P>
-
- org.hipparchus.optim.BaseMultivariateOptimizer<LagrangeSolution>
-
- org.hipparchus.optim.nonlinear.vector.constrained.ConstraintOptimizer
-
- org.hipparchus.optim.nonlinear.vector.constrained.AbstractSQPOptimizer
-
- Direct Known Subclasses:
SQPOptimizerGM,SQPOptimizerS
public abstract class AbstractSQPOptimizer extends ConstraintOptimizer
Abstract class for Sequential Quadratic Programming solvers- Since:
- 3.1
-
-
Field Summary
-
Fields inherited from class org.hipparchus.optim.BaseOptimizer
evaluations, iterations
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedAbstractSQPOptimizer()Simple constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description EqualityConstraintgetEqConstraint()Getter for equality constraint.InequalityConstraintgetIqConstraint()Getter for inequality constraint.TwiceDifferentiableFunctiongetObj()Getter for objective function.SQPOptiongetSettings()Getter for settings.protected RealVectorlagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y)Compute Lagrangian gradient for variable XLagrangeSolutionoptimize(OptimizationData... optData)Stores data and performs the optimization.protected voidparseOptimizationData(OptimizationData... optData)Scans the list of (required and optional) optimization data that characterize the problem.-
Methods inherited from class org.hipparchus.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
-
Methods inherited from class org.hipparchus.optim.BaseOptimizer
doOptimize, getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, incrementEvaluationCount, incrementIterationCount, optimize
-
-
-
-
Method Detail
-
getSettings
public SQPOption getSettings()
Getter for settings.- Returns:
- settings
-
getObj
public TwiceDifferentiableFunction getObj()
Getter for objective function.- Returns:
- objective function
-
getEqConstraint
public EqualityConstraint getEqConstraint()
Getter for equality constraint.- Returns:
- equality constraint
-
getIqConstraint
public InequalityConstraint getIqConstraint()
Getter for inequality constraint.- Returns:
- inequality constraint
-
optimize
public LagrangeSolution optimize(OptimizationData... optData)
Description copied from class:ConstraintOptimizerStores data and performs the optimization.The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).
Important note: Subclasses must override
BaseOptimizer.parseOptimizationData(OptimizationData[])if they need to register their own options; but then, they must also callsuper.parseOptimizationData(optData)within that method.- Overrides:
optimizein classConstraintOptimizer- Parameters:
optData- Optimization data. In addition to those documented inBaseOptimizer, this method will register the following data:- Returns:
- a point/value pair that satisfies the convergence criteria.
-
parseOptimizationData
protected void parseOptimizationData(OptimizationData... optData)
Description copied from class:BaseMultivariateOptimizerScans the list of (required and optional) optimization data that characterize the problem.- Overrides:
parseOptimizationDatain classBaseMultivariateOptimizer<LagrangeSolution>- Parameters:
optData- Optimization data. The following data will be looked for:
-
lagrangianGradX
protected RealVector lagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y)
Compute Lagrangian gradient for variable X- Parameters:
currentGrad- current gradientjacobConstraint- Jacobianx- value of xy- value of y- Returns:
- Lagrangian
-
-