Interface VectorDifferentiableFunction
-
- All Superinterfaces:
MultivariateVectorFunction
- All Known Subinterfaces:
Constraint
- All Known Implementing Classes:
BoundedConstraint,EqualityConstraint,InequalityConstraint,LinearBoundedConstraint,LinearEqualityConstraint,LinearInequalityConstraint
public interface VectorDifferentiableFunction extends MultivariateVectorFunction
A MultivariateFunction that also has a defined gradient and Hessian.- Since:
- 3.1
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description intdim()Returns the dimensionality of the function domain.intdimY()Returns the dimensionality of the function eval.default RealMatrixgradient(double[] x)Returns the gradient of this function at (x)RealMatrixjacobian(RealVector x)Returns the gradient of this function at (x)default double[]value(double[] x)Returns the value of this function at (x)RealVectorvalue(RealVector x)Returns the value of this function at (x)
-
-
-
Method Detail
-
dim
int dim()
Returns the dimensionality of the function domain. If dim() returns (n) then this function expects an n-vector as its input.- Returns:
- the expected dimension of the function's domain
-
dimY
int dimY()
Returns the dimensionality of the function eval.- Returns:
- the expected dimension of the function's eval
-
value
RealVector value(RealVector x)
Returns the value of this function at (x)- Parameters:
x- a point to evaluate this function at.- Returns:
- the value of this function at (x)
-
value
default double[] value(double[] x)
Returns the value of this function at (x)- Specified by:
valuein interfaceMultivariateVectorFunction- Parameters:
x- a point to evaluate this function at.- Returns:
- the value of this function at (x)
-
jacobian
RealMatrix jacobian(RealVector x)
Returns the gradient of this function at (x)- Parameters:
x- a point to evaluate this gradient at- Returns:
- the gradient of this function at (x)
-
gradient
default RealMatrix gradient(double[] x)
Returns the gradient of this function at (x)- Parameters:
x- a point to evaluate this gradient at- Returns:
- the gradient of this function at (x)
-
-