Uses of Class
org.hipparchus.complex.Complex
-
Packages that use Complex Package Description org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.linear Linear algebra support.org.hipparchus.special.elliptic.carlson Implementations of Carlson elliptic integrals.org.hipparchus.special.elliptic.jacobi Implementations of Jacobi elliptic functions.org.hipparchus.special.elliptic.legendre Implementations of Legendre elliptic integrals. -
-
Uses of Complex in org.hipparchus.analysis.solvers
Methods in org.hipparchus.analysis.solvers that return Complex Modifier and Type Method Description Complex[]LaguerreSolver. solveAllComplex(double[] coefficients, double initial)Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex[]LaguerreSolver. solveAllComplex(double[] coefficients, int maxEval, double initial)Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.ComplexLaguerreSolver. solveComplex(double[] coefficients, double initial)Find a complex root for the polynomial with the given coefficients, starting from the given initial value. -
Uses of Complex in org.hipparchus.complex
Fields in org.hipparchus.complex declared as Complex Modifier and Type Field Description static ComplexComplex. IThe square root of -1.static ComplexComplex. INFA complex number representing "+INF + INFi"static ComplexComplex. MINUS_IThe square root of -1.static ComplexComplex. MINUS_ONEA complex number representing "-1.0 + 0.0i".static ComplexComplex. NaNA complex number representing "NaN + NaNi".static ComplexComplex. ONEA complex number representing "1.0 + 0.0i".static ComplexComplex. PIA complex number representing "π + 0.0i".static ComplexComplex. ZEROA complex number representing "0.0 + 0.0i".Methods in org.hipparchus.complex that return Complex Modifier and Type Method Description ComplexComplex. abs()Return the absolute value of this complex number.ComplexComplex. acos()Compute the inverse cosine of this complex number.ComplexComplex. acosh()Inverse hyperbolic cosine operation.ComplexComplex. add(double addend)Returns aComplexwhose value is(this + addend), withaddendinterpreted as a real number.ComplexComplex. add(Complex addend)Returns aComplexwhose value is(this + addend).ComplexComplex. asin()Compute the inverse sine of this complex number.ComplexComplex. asinh()Inverse hyperbolic sine operation.ComplexComplex. atan()Compute the inverse tangent of this complex number.ComplexComplex. atan2(Complex x)Two arguments arc tangent operation.ComplexComplex. atanh()Inverse hyperbolic tangent operation.ComplexComplex. cbrt()Cubic root.ComplexComplex. ceil()Get the smallest whole number larger than instance.ComplexComplex. conjugate()Returns the conjugate of this complex number.static Complex[]ComplexUtils. convertToComplex(double[] real)Convert an array of primitive doubles to an array ofComplexobjects.ComplexComplex. copySign(double r)Returns the instance with the sign of the argument.ComplexComplex. copySign(Complex z)Returns the instance with the sign of the argument.ComplexComplex. cos()Compute the cosine of this complex number.ComplexComplex. cosh()Compute the hyperbolic cosine of this complex number.protected ComplexComplex. createComplex(double realPart, double imaginaryPart)Create a complex number given the real and imaginary parts.ComplexComplex. divide(double divisor)Returns aComplexwhose value is(this / divisor), withdivisorinterpreted as a real number.ComplexComplex. divide(Complex divisor)Returns aComplexwhose value is(this / divisor).ComplexComplex. exp()Compute the exponential function of this complex number.ComplexComplex. expm1()Exponential minus 1.ComplexComplex. floor()Get the largest whole number smaller than instance.ComplexComplex. getAddendum()Get the addendum to the real value of the number.ComplexComplexField. getOne()Get the multiplicative identity of the field.ComplexComplex. getPi()Get the Archimedes constant π.ComplexComplexField. getZero()Get the additive identity of the field.ComplexComplex. hypot(Complex y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end)Integrate a function along a straight path between points.ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path)Integrate a function along a polyline path between any number of points.ComplexComplex. linearCombination(double[] a, Complex[] b)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)Compute a linear combination.ComplexComplex. linearCombination(Complex[] a, Complex[] b)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)Compute a linear combination.ComplexComplex. log()Compute the natural logarithm of this complex number.ComplexComplex. log10()Base 10 logarithm.ComplexComplex. log1p()Shifted natural logarithm.ComplexComplex. multiply(double factor)Returns aComplexwhose value isthis * factor, withfactorinterpreted as a real number.ComplexComplex. multiply(int factor)Returns aComplexwhose value isthis * factor, withfactorinterpreted as a integer number.ComplexComplex. multiply(Complex factor)Returns aComplexwhose value isthis * factor.ComplexComplex. multiplyMinusI()Compute this *- -i.ComplexComplex. multiplyPlusI()Compute this * i.ComplexComplex. negate()Returns aComplexwhose value is(-this).ComplexComplex. newInstance(double realPart)Create an instance corresponding to a constant real value.ComplexComplexFormat. parse(String source)Parses a string to produce aComplexobject.ComplexComplexFormat. parse(String source, ParsePosition pos)Parses a string to produce aComplexobject.static ComplexComplexUtils. polar2Complex(double r, double theta)Creates a complex number from the given polar representation.ComplexComplex. pow(double x)Returns of value of this complex number raised to the power ofx.ComplexComplex. pow(int n)Integer power operation.ComplexComplex. pow(Complex x)Returns of value of this complex number raised to the power ofx.ComplexComplex. reciprocal()Returns the multiplicative inverse ofthiselement.ComplexComplex. remainder(double a)IEEE remainder operator.ComplexComplex. remainder(Complex a)IEEE remainder operator.ComplexComplex. rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.ComplexComplex. rootN(int n)Nth root.ComplexComplex. scalb(int n)Multiply the instance by a power of 2.ComplexComplex. sign()Compute the sign of the instance.ComplexComplex. sin()Compute the sine of this complex number.ComplexComplex. sinh()Compute the hyperbolic sine of this complex number.ComplexComplex. sqrt()Compute the square root of this complex number.ComplexComplex. sqrt1z()Compute the square root of1 - this2for this complex number.ComplexComplex. square()Compute this × this.ComplexComplex. subtract(double subtrahend)Returns aComplexwhose value is(this - subtrahend).ComplexComplex. subtract(Complex subtrahend)Returns aComplexwhose value is(this - subtrahend).ComplexComplex. tan()Compute the tangent of this complex number.ComplexComplex. tanh()Compute the hyperbolic tangent of this complex number.ComplexComplex. toDegrees()Convert radians to degrees, with error of less than 0.5 ULPComplexComplex. toRadians()Convert degrees to radians, with error of less than 0.5 ULPComplexComplex. ulp()Compute least significant bit (Unit in Last Position) for a number.static ComplexComplex. valueOf(double realPart)Create a complex number given only the real part.static ComplexComplex. valueOf(double realPart, double imaginaryPart)Create a complex number given the real and imaginary parts.Methods in org.hipparchus.complex that return types with arguments of type Complex Modifier and Type Method Description Class<Complex>ComplexField. getRuntimeClass()Returns the runtime class of the FieldElement.List<Complex>Complex. nthRoot(int n)Computes the n-th roots of this complex number.FieldSinCos<Complex>Complex. sinCos()Combined Sine and Cosine operation.FieldSinhCosh<Complex>Complex. sinhCosh()Combined hyperbolic sine and cosine operation.Methods in org.hipparchus.complex with parameters of type Complex Modifier and Type Method Description ComplexComplex. add(Complex addend)Returns aComplexwhose value is(this + addend).ComplexComplex. atan2(Complex x)Two arguments arc tangent operation.intComplexComparator. compare(Complex o1, Complex o2)Compare two complex numbers, using real ordering as the primary sort order and imaginary ordering as the secondary sort order.intComplex. compareTo(Complex o)ComplexComplex. copySign(Complex z)Returns the instance with the sign of the argument.ComplexComplex. divide(Complex divisor)Returns aComplexwhose value is(this / divisor).static booleanComplex. equals(Complex x, Complex y)Returnstrueiff the values are equal as defined byequals(x, y, 1).static booleanComplex. equals(Complex x, Complex y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static booleanComplex. equals(Complex x, Complex y, int maxUlps)Test for the floating-point equality between Complex objects.static booleanComplex. equalsWithRelativeTolerance(Complex x, Complex y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.StringComplexFormat. format(Complex c)This method callsComplexFormat.format(Object,StringBuffer,FieldPosition).StringBufferComplexFormat. format(Complex complex, StringBuffer toAppendTo, FieldPosition pos)Formats aComplexobject to produce a string.ComplexComplex. hypot(Complex y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end)Integrate a function along a straight path between points.ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path)Integrate a function along a polyline path between any number of points.ComplexComplex. linearCombination(double[] a, Complex[] b)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)Compute a linear combination.ComplexComplex. linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)Compute a linear combination.ComplexComplex. linearCombination(Complex[] a, Complex[] b)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)Compute a linear combination.ComplexComplex. linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)Compute a linear combination.ComplexComplex. multiply(Complex factor)Returns aComplexwhose value isthis * factor.ComplexComplex. pow(Complex x)Returns of value of this complex number raised to the power ofx.ComplexComplex. remainder(Complex a)IEEE remainder operator.ComplexComplex. subtract(Complex subtrahend)Returns aComplexwhose value is(this - subtrahend).Method parameters in org.hipparchus.complex with type arguments of type Complex Modifier and Type Method Description ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end)Integrate a function along a straight path between points.ComplexComplexUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path)Integrate a function along a polyline path between any number of points. -
Uses of Complex in org.hipparchus.linear
Methods in org.hipparchus.linear that return Complex Modifier and Type Method Description ComplexEigenDecompositionNonSymmetric. getDeterminant()Computes the determinant of the matrix.ComplexEigenDecompositionNonSymmetric. getEigenvalue(int i)Returns the ith eigenvalue of the original matrix.Complex[]ComplexEigenDecomposition. getEigenvalues()Getter of the eigen values.Complex[]EigenDecompositionNonSymmetric. getEigenvalues()Gets a copy of the eigenvalues of the original matrix.Methods in org.hipparchus.linear that return types with arguments of type Complex Modifier and Type Method Description FieldMatrix<Complex>ComplexEigenDecomposition. getD()Getter D.FieldVector<Complex>ComplexEigenDecomposition. getEigenvector(int i)Getter of the eigen vectors.FieldVector<Complex>EigenDecompositionNonSymmetric. getEigenvector(int i)Gets a copy of the ith eigenvector of the original matrix.FieldMatrix<Complex>ComplexEigenDecomposition. getV()Getter V.FieldMatrix<Complex>ComplexEigenDecomposition. getVT()Getter VT.FieldMatrix<Complex>OrderedComplexEigenDecomposition. getVT()Getter VT.Method parameters in org.hipparchus.linear with type arguments of type Complex Modifier and Type Method Description protected voidComplexEigenDecomposition. findEigenVectors(FieldMatrix<Complex> matrix)Compute the eigen vectors using the inverse power method.Constructor parameters in org.hipparchus.linear with type arguments of type Complex Constructor Description OrderedComplexEigenDecomposition(RealMatrix matrix, double eigenVectorsEquality, double epsilon, double epsilonAVVDCheck, Comparator<Complex> eigenValuesComparator)Constructor for decomposition. -
Uses of Complex in org.hipparchus.special.elliptic.carlson
Methods in org.hipparchus.special.elliptic.carlson that return Complex Modifier and Type Method Description static ComplexCarlsonEllipticIntegral. rC(Complex x, Complex y)Compute Carlson elliptic integral RC.static ComplexCarlsonEllipticIntegral. rD(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RD.static ComplexCarlsonEllipticIntegral. rF(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RF.static ComplexCarlsonEllipticIntegral. rG(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RG.static ComplexCarlsonEllipticIntegral. rJ(Complex x, Complex y, Complex z, Complex p)Compute Carlson elliptic integral RJ.static ComplexCarlsonEllipticIntegral. rJ(Complex x, Complex y, Complex z, Complex p, Complex delta)Compute Carlson elliptic integral RJ.Methods in org.hipparchus.special.elliptic.carlson with parameters of type Complex Modifier and Type Method Description static ComplexCarlsonEllipticIntegral. rC(Complex x, Complex y)Compute Carlson elliptic integral RC.static ComplexCarlsonEllipticIntegral. rD(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RD.static ComplexCarlsonEllipticIntegral. rF(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RF.static ComplexCarlsonEllipticIntegral. rG(Complex x, Complex y, Complex z)Compute Carlson elliptic integral RG.static ComplexCarlsonEllipticIntegral. rJ(Complex x, Complex y, Complex z, Complex p)Compute Carlson elliptic integral RJ.static ComplexCarlsonEllipticIntegral. rJ(Complex x, Complex y, Complex z, Complex p, Complex delta)Compute Carlson elliptic integral RJ. -
Uses of Complex in org.hipparchus.special.elliptic.jacobi
Methods in org.hipparchus.special.elliptic.jacobi that return Complex Modifier and Type Method Description ComplexTheta. theta1()Get the value of the θ₁(z|τ) function.ComplexTheta. theta2()Get the value of the θ₂(z|τ) function.ComplexTheta. theta3()Get the value of the θ₃(z|τ) function.ComplexTheta. theta4()Get the value of the θ₄(z|τ) function.Methods in org.hipparchus.special.elliptic.jacobi that return types with arguments of type Complex Modifier and Type Method Description static FieldJacobiElliptic<Complex>JacobiEllipticBuilder. build(Complex m)Build an algorithm for computing Jacobi elliptic functions.Methods in org.hipparchus.special.elliptic.jacobi with parameters of type Complex Modifier and Type Method Description static FieldJacobiElliptic<Complex>JacobiEllipticBuilder. build(Complex m)Build an algorithm for computing Jacobi elliptic functions.ThetaJacobiTheta. values(Complex z)Evaluate the Jacobi theta functions. -
Uses of Complex in org.hipparchus.special.elliptic.legendre
Methods in org.hipparchus.special.elliptic.legendre that return Complex Modifier and Type Method Description static ComplexLegendreEllipticIntegral. bigD(Complex m)Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static ComplexLegendreEllipticIntegral. bigD(Complex phi, Complex m)Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static ComplexLegendreEllipticIntegral. bigE(Complex m)Get the complete elliptic integral of the second kind E(m).static ComplexLegendreEllipticIntegral. bigE(Complex phi, Complex m)Get the incomplete elliptic integral of the second kind E(φ, m).static ComplexLegendreEllipticIntegral. bigE(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.static ComplexLegendreEllipticIntegral. bigF(Complex phi, Complex m)Get the incomplete elliptic integral of the first kind F(φ, m).static ComplexLegendreEllipticIntegral. bigF(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.static ComplexLegendreEllipticIntegral. bigK(Complex m)Get the complete elliptic integral of the first kind K(m).static ComplexLegendreEllipticIntegral. bigKPrime(Complex m)Get the complete elliptic integral of the first kind K'(m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex m)Get the complete elliptic integral of the third kind Π(n, m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex phi, Complex m)Get the incomplete elliptic integral of the third kind Π(n, φ, m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.Methods in org.hipparchus.special.elliptic.legendre with parameters of type Complex Modifier and Type Method Description static ComplexLegendreEllipticIntegral. bigD(Complex m)Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static ComplexLegendreEllipticIntegral. bigD(Complex phi, Complex m)Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static ComplexLegendreEllipticIntegral. bigE(Complex m)Get the complete elliptic integral of the second kind E(m).static ComplexLegendreEllipticIntegral. bigE(Complex phi, Complex m)Get the incomplete elliptic integral of the second kind E(φ, m).static ComplexLegendreEllipticIntegral. bigE(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.static ComplexLegendreEllipticIntegral. bigF(Complex phi, Complex m)Get the incomplete elliptic integral of the first kind F(φ, m).static ComplexLegendreEllipticIntegral. bigF(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.static ComplexLegendreEllipticIntegral. bigK(Complex m)Get the complete elliptic integral of the first kind K(m).static ComplexLegendreEllipticIntegral. bigKPrime(Complex m)Get the complete elliptic integral of the first kind K'(m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex m)Get the complete elliptic integral of the third kind Π(n, m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex phi, Complex m)Get the incomplete elliptic integral of the third kind Π(n, φ, m).static ComplexLegendreEllipticIntegral. bigPi(Complex n, Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.
-