| AdaptiveStepsizeFieldIntegrator |   | 87% |   | 76% | 8 | 24 | 9 | 62 | 3 | 11 | 0 | 1 |
| GraggBulirschStoerIntegrator |   | 98% |   | 91% | 19 | 124 | 6 | 298 | 0 | 11 | 0 | 1 |
| StepsizeHelper |   | 94% |   | 94% | 2 | 33 | 2 | 64 | 0 | 14 | 0 | 1 |
| FieldExplicitRungeKuttaIntegrator |   | 95% |  | 96% | 2 | 26 | 3 | 68 | 1 | 11 | 0 | 1 |
| AdaptiveStepsizeIntegrator |   | 93% |   | 88% | 4 | 24 | 4 | 62 | 1 | 11 | 0 | 1 |
| AdamsFieldIntegrator |  | 97% |   | 92% | 3 | 25 | 0 | 83 | 0 | 6 | 0 | 1 |
| AdamsIntegrator |  | 97% |   | 92% | 3 | 25 | 0 | 79 | 0 | 6 | 0 | 1 |
| EmbeddedRungeKuttaFieldIntegrator |  | 98% |  | 100% | 3 | 33 | 3 | 105 | 3 | 13 | 0 | 1 |
| EmbeddedRungeKuttaIntegrator |  | 98% |  | 100% | 3 | 28 | 3 | 88 | 3 | 9 | 0 | 1 |
| FixedStepRungeKuttaFieldIntegrator |  | 97% |  | 95% | 1 | 19 | 1 | 60 | 0 | 7 | 0 | 1 |
| FixedStepRungeKuttaIntegrator |  | 97% |  | 96% | 1 | 16 | 1 | 52 | 0 | 3 | 0 | 1 |
| DormandPrince853FieldIntegrator |  | 100% |  | 100% | 0 | 11 | 0 | 188 | 0 | 8 | 0 | 1 |
| DormandPrince853Integrator |  | 100% |  | 100% | 0 | 10 | 0 | 26 | 0 | 8 | 0 | 1 |
| AdamsNordsieckFieldTransformer |  | 100% |  | 100% | 0 | 23 | 0 | 72 | 0 | 8 | 0 | 1 |
| DormandPrince54FieldIntegrator |  | 100% |  | 100% | 0 | 10 | 0 | 58 | 0 | 8 | 0 | 1 |
| HighamHall54FieldIntegrator |  | 100% |  | 100% | 0 | 11 | 0 | 58 | 0 | 8 | 0 | 1 |
| AdamsNordsieckTransformer |  | 100% |  | 100% | 0 | 23 | 0 | 74 | 0 | 7 | 0 | 1 |
| LutherFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 47 | 0 | 5 | 0 | 1 |
| HighamHall54Integrator |  | 100% |  | 100% | 0 | 11 | 0 | 20 | 0 | 9 | 0 | 1 |
| DormandPrince54Integrator |  | 100% |  | 100% | 0 | 9 | 0 | 17 | 0 | 8 | 0 | 1 |
| LutherIntegrator |  | 100% | | n/a | 0 | 6 | 0 | 7 | 0 | 6 | 0 | 1 |
| GillFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 28 | 0 | 5 | 0 | 1 |
| ExplicitRungeKuttaIntegrator |  | 100% |  | 100% | 0 | 9 | 0 | 26 | 0 | 4 | 0 | 1 |
| ThreeEighthesFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 24 | 0 | 5 | 0 | 1 |
| ClassicalRungeKuttaFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 24 | 0 | 5 | 0 | 1 |
| AdamsMoultonFieldIntegrator.Corrector |  | 100% |  | 100% | 0 | 7 | 0 | 21 | 0 | 4 | 0 | 1 |
| AdamsBashforthFieldIntegrator |  | 100% |  | 100% | 0 | 7 | 0 | 19 | 0 | 4 | 0 | 1 |
| AdamsMoultonIntegrator.Corrector |  | 100% |  | 100% | 0 | 7 | 0 | 21 | 0 | 4 | 0 | 1 |
| GillIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 9 | 0 | 5 | 0 | 1 |
| AdamsBashforthIntegrator |  | 100% |  | 100% | 0 | 7 | 0 | 19 | 0 | 4 | 0 | 1 |
| AdamsMoultonFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 18 | 0 | 4 | 0 | 1 |
| AdamsMoultonIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 18 | 0 | 4 | 0 | 1 |
| ClassicalRungeKuttaIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
| ThreeEighthesIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
| MidpointFieldIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 13 | 0 | 5 | 0 | 1 |
| EulerFieldIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 8 | 0 | 5 | 0 | 1 |
| MidpointIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
| EulerIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |