Class Covariance
- java.lang.Object
-
- org.hipparchus.stat.correlation.Covariance
-
- Direct Known Subclasses:
StorelessCovariance
public class Covariance extends Object
Computes covariances for pairs of arrays or columns of a matrix.The constructors that take
RealMatrixordouble[][]arguments generate covariance matrices. The columns of the input matrices are assumed to represent variable values.The constructor argument
biasCorrecteddetermines whether or not computed covariances are bias-corrected.Unbiased covariances are given by the formula:
cov(X, Y) = Σ[(xi - E(X))(yi - E(Y))] / (n - 1)where
E(X)is the mean ofXandE(Y)is the mean of theYvalues.Non-bias-corrected estimates use
nin place ofn - 1.
-
-
Constructor Summary
Constructors Constructor Description Covariance()Create a Covariance with no data.Covariance(double[][] data)Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(double[][] data, boolean biasCorrected)Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(RealMatrix matrix)Create a covariance matrix from a matrix whose columns represent covariates.Covariance(RealMatrix matrix, boolean biasCorrected)Create a covariance matrix from a matrix whose columns represent covariates.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected RealMatrixcomputeCovarianceMatrix(double[][] data)Create a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(double[][] data, boolean biasCorrected)Compute a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(RealMatrix matrix)Create a covariance matrix from a matrix whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected)Compute a covariance matrix from a matrix whose columns represent covariates.doublecovariance(double[] xArray, double[] yArray)Computes the covariance between the two arrays, using the bias-corrected formula.doublecovariance(double[] xArray, double[] yArray, boolean biasCorrected)Computes the covariance between the two arrays.RealMatrixgetCovarianceMatrix()Returns the covariance matrixintgetN()Returns the number of observations (length of covariate vectors)
-
-
-
Constructor Detail
-
Covariance
public Covariance()
Create a Covariance with no data.
-
Covariance
public Covariance(double[][] data, boolean biasCorrected) throws MathIllegalArgumentExceptionCreate a Covariance matrix from a rectangular array whose columns represent covariates.The
biasCorrectedparameter determines whether or not covariance estimates are bias-corrected.The input array must be rectangular with at least one column and two rows.
- Parameters:
data- rectangular array with columns representing covariatesbiasCorrected- true means covariances are bias-corrected- Throws:
MathIllegalArgumentException- if the input data array is not rectangular with at least two rows and one column.MathIllegalArgumentException- if the input data array is not rectangular with at least one row and one column.
-
Covariance
public Covariance(double[][] data) throws MathIllegalArgumentExceptionCreate a Covariance matrix from a rectangular array whose columns represent covariates.The input array must be rectangular with at least one column and two rows.
- Parameters:
data- rectangular array with columns representing covariates- Throws:
MathIllegalArgumentException- if the input data array is not rectangular with at least two rows and one column.MathIllegalArgumentException- if the input data array is not rectangular with at least one row and one column.
-
Covariance
public Covariance(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException
Create a covariance matrix from a matrix whose columns represent covariates.The
biasCorrectedparameter determines whether or not covariance estimates are bias-corrected.The matrix must have at least one column and two rows.
- Parameters:
matrix- matrix with columns representing covariatesbiasCorrected- true means covariances are bias-corrected- Throws:
MathIllegalArgumentException- if the input matrix does not have at least two rows and one column
-
Covariance
public Covariance(RealMatrix matrix) throws MathIllegalArgumentException
Create a covariance matrix from a matrix whose columns represent covariates.The matrix must have at least one column and two rows.
- Parameters:
matrix- matrix with columns representing covariates- Throws:
MathIllegalArgumentException- if the input matrix does not have at least two rows and one column
-
-
Method Detail
-
getCovarianceMatrix
public RealMatrix getCovarianceMatrix()
Returns the covariance matrix- Returns:
- covariance matrix
-
getN
public int getN()
Returns the number of observations (length of covariate vectors)- Returns:
- number of observations
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException
Compute a covariance matrix from a matrix whose columns represent covariates.- Parameters:
matrix- input matrix (must have at least one column and two rows)biasCorrected- determines whether or not covariance estimates are bias-corrected- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the matrix does not contain sufficient data
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix) throws MathIllegalArgumentException
Create a covariance matrix from a matrix whose columns represent covariates. Covariances are computed using the bias-corrected formula.- Parameters:
matrix- input matrix (must have at least one column and two rows)- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if matrix does not contain sufficient data- See Also:
Covariance(org.hipparchus.linear.RealMatrix)
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException
Compute a covariance matrix from a rectangular array whose columns represent covariates.- Parameters:
data- input array (must have at least one column and two rows)biasCorrected- determines whether or not covariance estimates are bias-corrected- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the data array does not contain sufficient dataMathIllegalArgumentException- if the input data array is not rectangular with at least one row and one column.
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(double[][] data) throws MathIllegalArgumentException
Create a covariance matrix from a rectangular array whose columns represent covariates. Covariances are computed using the bias-corrected formula.- Parameters:
data- input array (must have at least one column and two rows)- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the data array does not contain sufficient dataMathIllegalArgumentException- if the input data array is not rectangular with at least one row and one column.- See Also:
Covariance(org.hipparchus.linear.RealMatrix)
-
covariance
public double covariance(double[] xArray, double[] yArray, boolean biasCorrected) throws MathIllegalArgumentExceptionComputes the covariance between the two arrays.Array lengths must match and the common length must be at least 2.
- Parameters:
xArray- first data arrayyArray- second data arraybiasCorrected- if true, returned value will be bias-corrected- Returns:
- returns the covariance for the two arrays
- Throws:
MathIllegalArgumentException- if the arrays lengths do not match or there is insufficient data
-
covariance
public double covariance(double[] xArray, double[] yArray) throws MathIllegalArgumentExceptionComputes the covariance between the two arrays, using the bias-corrected formula.Array lengths must match and the common length must be at least 2.
- Parameters:
xArray- first data arrayyArray- second data array- Returns:
- returns the covariance for the two arrays
- Throws:
MathIllegalArgumentException- if the arrays lengths do not match or there is insufficient data
-
-