Class Complex
- java.lang.Object
-
- org.hipparchus.complex.Complex
-
- All Implemented Interfaces:
Serializable,Comparable<Complex>,CalculusFieldElement<Complex>,FieldElement<Complex>
public class Complex extends Object implements CalculusFieldElement<Complex>, Comparable<Complex>, Serializable
Representation of a Complex number, i.e. a number which has both a real and imaginary part.Implementations of arithmetic operations handle
NaNand infinite values according to the rules forDouble, i.e.equals(java.lang.Object)is an equivalence relation for all instances that have aNaNin either real or imaginary part, e.g. the following are considered equal:1 + NaNiNaN + iNaN + NaNi
Note that this contradicts the IEEE-754 standard for floating point numbers (according to which the test
x == xmust fail ifxisNaN). The methodequals for primitive doubleinPrecisionconforms with IEEE-754 while this class conforms with the standard behavior for Java object types.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static ComplexIThe square root of -1.static ComplexINFA complex number representing "+INF + INFi"static ComplexMINUS_IThe square root of -1.static ComplexMINUS_ONEA complex number representing "-1.0 + 0.0i".static ComplexNaNA complex number representing "NaN + NaNi".static ComplexONEA complex number representing "1.0 + 0.0i".static ComplexPIA complex number representing "π + 0.0i".static ComplexZEROA complex number representing "0.0 + 0.0i".
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Complexabs()Return the absolute value of this complex number.Complexacos()Compute the inverse cosine of this complex number.Complexacosh()Inverse hyperbolic cosine operation.Complexadd(double addend)Returns aComplexwhose value is(this + addend), withaddendinterpreted as a real number.Complexadd(Complex addend)Returns aComplexwhose value is(this + addend).Complexasin()Compute the inverse sine of this complex number.Complexasinh()Inverse hyperbolic sine operation.Complexatan()Compute the inverse tangent of this complex number.Complexatan2(Complex x)Two arguments arc tangent operation.Complexatanh()Inverse hyperbolic tangent operation.Complexcbrt()Cubic root.Complexceil()Get the smallest whole number larger than instance.intcompareTo(Complex o)Complexconjugate()Returns the conjugate of this complex number.ComplexcopySign(double r)Returns the instance with the sign of the argument.ComplexcopySign(Complex z)Returns the instance with the sign of the argument.Complexcos()Compute the cosine of this complex number.Complexcosh()Compute the hyperbolic cosine of this complex number.protected ComplexcreateComplex(double realPart, double imaginaryPart)Create a complex number given the real and imaginary parts.Complexdivide(double divisor)Returns aComplexwhose value is(this / divisor), withdivisorinterpreted as a real number.Complexdivide(Complex divisor)Returns aComplexwhose value is(this / divisor).booleanequals(Object other)Test for equality with another object.static booleanequals(Complex x, Complex y)Returnstrueiff the values are equal as defined byequals(x, y, 1).static booleanequals(Complex x, Complex y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static booleanequals(Complex x, Complex y, int maxUlps)Test for the floating-point equality between Complex objects.static booleanequalsWithRelativeTolerance(Complex x, Complex y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.Complexexp()Compute the exponential function of this complex number.Complexexpm1()Exponential minus 1.Complexfloor()Get the largest whole number smaller than instance.ComplexgetAddendum()Get the addendum to the real value of the number.doublegetArgument()Compute the argument of this complex number.ComplexFieldgetField()Get theFieldto which the instance belongs.doublegetImaginary()Access the imaginary part.doublegetImaginaryPart()Access the imaginary part.ComplexgetPi()Get the Archimedes constant π.doublegetReal()Access the real part.doublegetRealPart()Access the real part.inthashCode()Get a hashCode for the complex number.Complexhypot(Complex y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.booleanisInfinite()Checks whether either the real or imaginary part of this complex number takes an infinite value (eitherDouble.POSITIVE_INFINITYorDouble.NEGATIVE_INFINITY) and neither part isNaN.booleanisMathematicalInteger()Check whether the instance is an integer (i.e. imaginary part is zero and real part has no fractional part).booleanisNaN()Checks whether either or both parts of this complex number isNaN.booleanisReal()Check whether the instance is real (i.e. imaginary part is zero).booleanisZero()Check if an element is semantically equal to zero.ComplexlinearCombination(double[] a, Complex[] b)Compute a linear combination.ComplexlinearCombination(double a1, Complex b1, double a2, Complex b2)Compute a linear combination.ComplexlinearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)Compute a linear combination.ComplexlinearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)Compute a linear combination.ComplexlinearCombination(Complex[] a, Complex[] b)Compute a linear combination.ComplexlinearCombination(Complex a1, Complex b1, Complex a2, Complex b2)Compute a linear combination.ComplexlinearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)Compute a linear combination.ComplexlinearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)Compute a linear combination.Complexlog()Compute the natural logarithm of this complex number.Complexlog10()Base 10 logarithm.Complexlog1p()Shifted natural logarithm.Complexmultiply(double factor)Returns aComplexwhose value isthis * factor, withfactorinterpreted as a real number.Complexmultiply(int factor)Returns aComplexwhose value isthis * factor, withfactorinterpreted as a integer number.Complexmultiply(Complex factor)Returns aComplexwhose value isthis * factor.ComplexmultiplyMinusI()Compute this *- -i.ComplexmultiplyPlusI()Compute this * i.Complexnegate()Returns aComplexwhose value is(-this).ComplexnewInstance(double realPart)Create an instance corresponding to a constant real value.doublenorm()norm.List<Complex>nthRoot(int n)Computes the n-th roots of this complex number.Complexpow(double x)Returns of value of this complex number raised to the power ofx.Complexpow(int n)Integer power operation.Complexpow(Complex x)Returns of value of this complex number raised to the power ofx.protected ObjectreadResolve()Resolve the transient fields in a deserialized Complex Object.Complexreciprocal()Returns the multiplicative inverse ofthiselement.Complexremainder(double a)IEEE remainder operator.Complexremainder(Complex a)IEEE remainder operator.Complexrint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.ComplexrootN(int n)Nth root.Complexscalb(int n)Multiply the instance by a power of 2.Complexsign()Compute the sign of the instance.Complexsin()Compute the sine of this complex number.FieldSinCos<Complex>sinCos()Combined Sine and Cosine operation.Complexsinh()Compute the hyperbolic sine of this complex number.FieldSinhCosh<Complex>sinhCosh()Combined hyperbolic sine and cosine operation.Complexsqrt()Compute the square root of this complex number.Complexsqrt1z()Compute the square root of1 - this2for this complex number.Complexsquare()Compute this × this.Complexsubtract(double subtrahend)Returns aComplexwhose value is(this - subtrahend).Complexsubtract(Complex subtrahend)Returns aComplexwhose value is(this - subtrahend).Complextan()Compute the tangent of this complex number.Complextanh()Compute the hyperbolic tangent of this complex number.ComplextoDegrees()Convert radians to degrees, with error of less than 0.5 ULPComplextoRadians()Convert degrees to radians, with error of less than 0.5 ULPStringtoString()Complexulp()Compute least significant bit (Unit in Last Position) for a number.static ComplexvalueOf(double realPart)Create a complex number given only the real part.static ComplexvalueOf(double realPart, double imaginaryPart)Create a complex number given the real and imaginary parts.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, round
-
-
-
-
Field Detail
-
I
public static final Complex I
The square root of -1. A number representing "0.0 + 1.0i".
-
MINUS_I
public static final Complex MINUS_I
The square root of -1. A number representing "0.0 - 1.0i".- Since:
- 1.7
-
NaN
public static final Complex NaN
A complex number representing "NaN + NaNi".
-
INF
public static final Complex INF
A complex number representing "+INF + INFi"
-
ONE
public static final Complex ONE
A complex number representing "1.0 + 0.0i".
-
MINUS_ONE
public static final Complex MINUS_ONE
A complex number representing "-1.0 + 0.0i".- Since:
- 1.7
-
ZERO
public static final Complex ZERO
A complex number representing "0.0 + 0.0i".
-
PI
public static final Complex PI
A complex number representing "π + 0.0i".
-
-
Constructor Detail
-
Complex
public Complex(double real)
Create a complex number given only the real part.- Parameters:
real- Real part.
-
Complex
public Complex(double real, double imaginary)Create a complex number given the real and imaginary parts.- Parameters:
real- Real part.imaginary- Imaginary part.
-
-
Method Detail
-
abs
public Complex abs()
Return the absolute value of this complex number. ReturnsNaNif either real or imaginary part isNaNandDouble.POSITIVE_INFINITYif neither part isNaN, but at least one part is infinite.- Specified by:
absin interfaceCalculusFieldElement<Complex>- Returns:
- the norm.
- Since:
- 2.0
-
norm
public double norm()
norm.- Specified by:
normin interfaceCalculusFieldElement<Complex>- Returns:
- norm(this)
-
add
public Complex add(Complex addend) throws NullArgumentException
Returns aComplexwhose value is(this + addend). Uses the definitional formula
If either(a + bi) + (c + di) = (a+c) + (b+d)ithisoraddendhas aNaNvalue in either part,NaNis returned; otherwiseInfiniteandNaNvalues are returned in the parts of the result according to the rules forDoublearithmetic.- Specified by:
addin interfaceFieldElement<Complex>- Parameters:
addend- Value to be added to thisComplex.- Returns:
this + addend.- Throws:
NullArgumentException- ifaddendisnull.
-
add
public Complex add(double addend)
Returns aComplexwhose value is(this + addend), withaddendinterpreted as a real number.- Specified by:
addin interfaceCalculusFieldElement<Complex>- Parameters:
addend- Value to be added to thisComplex.- Returns:
this + addend.- See Also:
add(Complex)
-
conjugate
public Complex conjugate()
Returns the conjugate of this complex number. The conjugate ofa + biisa - bi.NaNis returned if either the real or imaginary part of this Complex number equalsDouble.NaN.If the imaginary part is infinite, and the real part is not
NaN, the returned value has infinite imaginary part of the opposite sign, e.g. the conjugate of1 + POSITIVE_INFINITY iis1 - NEGATIVE_INFINITY i.- Returns:
- the conjugate of this Complex object.
-
divide
public Complex divide(Complex divisor) throws NullArgumentException
Returns aComplexwhose value is(this / divisor). Implements the definitional formula
but uses prescaling of operands to limit the effects of overflows and underflows in the computation.a + bi ac + bd + (bc - ad)i ----------- = ------------------------- c + di c2 + d2InfiniteandNaNvalues are handled according to the following rules, applied in the order presented:- If either
thisordivisorhas aNaNvalue in either part,NaNis returned. - If
divisorequalsZERO,NaNis returned. - If
thisanddivisorare both infinite,NaNis returned. - If
thisis finite (i.e., has noInfiniteorNaNparts) anddivisoris infinite (one or both parts infinite),ZEROis returned. - If
thisis infinite anddivisoris finite,NaNvalues are returned in the parts of the result if theDoublerules applied to the definitional formula forceNaNresults.
- Specified by:
dividein interfaceCalculusFieldElement<Complex>- Specified by:
dividein interfaceFieldElement<Complex>- Parameters:
divisor- Value by which thisComplexis to be divided.- Returns:
this / divisor.- Throws:
NullArgumentException- ifdivisorisnull.
- If either
-
divide
public Complex divide(double divisor)
Returns aComplexwhose value is(this / divisor), withdivisorinterpreted as a real number.- Specified by:
dividein interfaceCalculusFieldElement<Complex>- Parameters:
divisor- Value by which thisComplexis to be divided.- Returns:
this / divisor.- See Also:
divide(Complex)
-
reciprocal
public Complex reciprocal()
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceFieldElement<Complex>- Returns:
- the inverse of
this.
-
equals
public boolean equals(Object other)
Test for equality with another object. If both the real and imaginary parts of two complex numbers are exactly the same, and neither isDouble.NaN, the two Complex objects are considered to be equal. The behavior is the same as for JDK'sDouble:- All
NaNvalues are considered to be equal, i.e, if either (or both) real and imaginary parts of the complex number are equal toDouble.NaN, the complex number is equal toNaN. - Instances constructed with different representations of zero (i.e. either "0" or "-0") are not considered to be equal.
- All
-
equals
public static boolean equals(Complex x, Complex y, int maxUlps)
Test for the floating-point equality between Complex objects. It returnstrueif both arguments are equal or within the range of allowed error (inclusive).- Parameters:
x- First value (cannot benull).y- Second value (cannot benull).maxUlps-(maxUlps - 1)is the number of floating point values between the real (resp. imaginary) parts ofxandy.- Returns:
trueif there are fewer thanmaxUlpsfloating point values between the real (resp. imaginary) parts ofxandy.- See Also:
Precision.equals(double,double,int)
-
equals
public static boolean equals(Complex x, Complex y)
Returnstrueiff the values are equal as defined byequals(x, y, 1).- Parameters:
x- First value (cannot benull).y- Second value (cannot benull).- Returns:
trueif the values are equal.
-
equals
public static boolean equals(Complex x, Complex y, double eps)
Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive). Returnsfalseif either of the arguments is NaN.- Parameters:
x- First value (cannot benull).y- Second value (cannot benull).eps- Amount of allowed absolute error.- Returns:
trueif the values are two adjacent floating point numbers or they are within range of each other.- See Also:
Precision.equals(double,double,double)
-
equalsWithRelativeTolerance
public static boolean equalsWithRelativeTolerance(Complex x, Complex y, double eps)
Returnstrueif, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance. Returnsfalseif either of the arguments is NaN.- Parameters:
x- First value (cannot benull).y- Second value (cannot benull).eps- Amount of allowed relative error.- Returns:
trueif the values are two adjacent floating point numbers or they are within range of each other.- See Also:
Precision.equalsWithRelativeTolerance(double,double,double)
-
hashCode
public int hashCode()
Get a hashCode for the complex number. AnyDouble.NaNvalue in real or imaginary part produces the same hash code7.
-
isZero
public boolean isZero()
Check if an element is semantically equal to zero.The default implementation simply calls
equals(getField().getZero()). However, this may need to be overridden in some cases as due to compatibility withhashCode()some classes implementsequals(Object)in such a way that -0.0 and +0.0 are different, which may be a problem. It prevents for example identifying a diagonal element is zero and should be avoided when doing partial pivoting in LU decomposition.This implementation considers +0.0 and -0.0 to be equal for both real and imaginary components.
- Specified by:
isZeroin interfaceFieldElement<Complex>- Returns:
- true if the element is semantically equal to zero
- Since:
- 1.8
-
getImaginary
public double getImaginary()
Access the imaginary part.- Returns:
- the imaginary part.
-
getImaginaryPart
public double getImaginaryPart()
Access the imaginary part.- Returns:
- the imaginary part.
- Since:
- 2.0
-
getReal
public double getReal()
Access the real part.- Specified by:
getRealin interfaceFieldElement<Complex>- Returns:
- the real part.
-
getAddendum
public Complex getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real partrecovers the instance. This means that whene.getReal()is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())iseande.subtract(e.getReal())ise.getAddendum(). Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendumin interfaceCalculusFieldElement<Complex>- Returns:
- real value
-
getRealPart
public double getRealPart()
Access the real part.- Returns:
- the real part.
- Since:
- 2.0
-
isNaN
public boolean isNaN()
Checks whether either or both parts of this complex number isNaN.- Specified by:
isNaNin interfaceCalculusFieldElement<Complex>- Returns:
- true if either or both parts of this complex number is
NaN; false otherwise.
-
isReal
public boolean isReal()
Check whether the instance is real (i.e. imaginary part is zero).- Returns:
- true if imaginary part is zero
- Since:
- 1.7
-
isMathematicalInteger
public boolean isMathematicalInteger()
Check whether the instance is an integer (i.e. imaginary part is zero and real part has no fractional part).- Returns:
- true if imaginary part is zero and real part has no fractional part
- Since:
- 1.7
-
isInfinite
public boolean isInfinite()
Checks whether either the real or imaginary part of this complex number takes an infinite value (eitherDouble.POSITIVE_INFINITYorDouble.NEGATIVE_INFINITY) and neither part isNaN.- Specified by:
isInfinitein interfaceCalculusFieldElement<Complex>- Returns:
- true if one or both parts of this complex number are infinite
and neither part is
NaN.
-
multiply
public Complex multiply(Complex factor) throws NullArgumentException
Returns aComplexwhose value isthis * factor. Implements preliminary checks forNaNand infinity followed by the definitional formula:
Returns(a + bi)(c + di) = (ac - bd) + (ad + bc)iNaNif eitherthisorfactorhas one or moreNaNparts.Returns
INFif neitherthisnorfactorhas one or moreNaNparts and if eitherthisorfactorhas one or more infinite parts (same result is returned regardless of the sign of the components).Returns finite values in components of the result per the definitional formula in all remaining cases.
- Specified by:
multiplyin interfaceFieldElement<Complex>- Parameters:
factor- value to be multiplied by thisComplex.- Returns:
this * factor.- Throws:
NullArgumentException- iffactorisnull.
-
multiply
public Complex multiply(int factor)
Returns aComplexwhose value isthis * factor, withfactorinterpreted as a integer number.- Specified by:
multiplyin interfaceCalculusFieldElement<Complex>- Specified by:
multiplyin interfaceFieldElement<Complex>- Parameters:
factor- value to be multiplied by thisComplex.- Returns:
this * factor.- See Also:
multiply(Complex)
-
multiply
public Complex multiply(double factor)
Returns aComplexwhose value isthis * factor, withfactorinterpreted as a real number.- Specified by:
multiplyin interfaceCalculusFieldElement<Complex>- Parameters:
factor- value to be multiplied by thisComplex.- Returns:
this * factor.- See Also:
multiply(Complex)
-
multiplyPlusI
public Complex multiplyPlusI()
Compute this * i.- Returns:
- this * i
- Since:
- 2.0
-
multiplyMinusI
public Complex multiplyMinusI()
Compute this *- -i.- Returns:
- this * i
- Since:
- 2.0
-
square
public Complex square()
Compute this × this.- Specified by:
squarein interfaceCalculusFieldElement<Complex>- Returns:
- a new element representing this × this
-
negate
public Complex negate()
Returns aComplexwhose value is(-this). ReturnsNaNif either real or imaginary part of this Complex number isDouble.NaN.- Specified by:
negatein interfaceFieldElement<Complex>- Returns:
-this.
-
subtract
public Complex subtract(Complex subtrahend) throws NullArgumentException
Returns aComplexwhose value is(this - subtrahend). Uses the definitional formula
If either(a + bi) - (c + di) = (a-c) + (b-d)ithisorsubtrahendhas aNaN]value in either part,NaNis returned; otherwise infinite andNaNvalues are returned in the parts of the result according to the rules forDoublearithmetic.- Specified by:
subtractin interfaceCalculusFieldElement<Complex>- Specified by:
subtractin interfaceFieldElement<Complex>- Parameters:
subtrahend- value to be subtracted from thisComplex.- Returns:
this - subtrahend.- Throws:
NullArgumentException- ifsubtrahendisnull.
-
subtract
public Complex subtract(double subtrahend)
Returns aComplexwhose value is(this - subtrahend).- Specified by:
subtractin interfaceCalculusFieldElement<Complex>- Parameters:
subtrahend- value to be subtracted from thisComplex.- Returns:
this - subtrahend.- See Also:
subtract(Complex)
-
acos
public Complex acos()
Compute the inverse cosine of this complex number. Implements the formula:
Returnsacos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))NaNif either real or imaginary part of the input argument isNaNor infinite.- Specified by:
acosin interfaceCalculusFieldElement<Complex>- Returns:
- the inverse cosine of this complex number.
-
asin
public Complex asin()
Compute the inverse sine of this complex number. Implements the formula:asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))Returns
NaNif either real or imaginary part of the input argument isNaNor infinite.- Specified by:
asinin interfaceCalculusFieldElement<Complex>- Returns:
- the inverse sine of this complex number.
-
atan
public Complex atan()
Compute the inverse tangent of this complex number. Implements the formula:atan(z) = (i/2) log((1 - iz)/(1 + iz))Returns
NaNif either real or imaginary part of the input argument isNaNor infinite.- Specified by:
atanin interfaceCalculusFieldElement<Complex>- Returns:
- the inverse tangent of this complex number
-
cos
public Complex cos()
Compute the cosine of this complex number. Implements the formula:cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)iwhere the (real) functions on the right-hand side are
FastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
NaNif either real or imaginary part of the input argument isNaN.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
cos(1 ± INFINITY i) = 1 ∓ INFINITY i cos(±INFINITY + i) = NaN + NaN i cos(±INFINITY ± INFINITY i) = NaN + NaN i- Specified by:
cosin interfaceCalculusFieldElement<Complex>- Returns:
- the cosine of this complex number.
-
cosh
public Complex cosh()
Compute the hyperbolic cosine of this complex number. Implements the formula:
where the (real) functions on the right-hand side arecosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)iFastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.Examples:
cosh(1 ± INFINITY i) = NaN + NaN i cosh(±INFINITY + i) = INFINITY ± INFINITY i cosh(±INFINITY ± INFINITY i) = NaN + NaN i- Specified by:
coshin interfaceCalculusFieldElement<Complex>- Returns:
- the hyperbolic cosine of this complex number.
-
exp
public Complex exp()
Compute the exponential function of this complex number. Implements the formula:
where the (real) functions on the right-hand side areexp(a + bi) = exp(a)cos(b) + exp(a)sin(b)iFastMath.exp(double)p},FastMath.cos(double), andFastMath.sin(double).Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.Examples:
exp(1 ± INFINITY i) = NaN + NaN i exp(INFINITY + i) = INFINITY + INFINITY i exp(-INFINITY + i) = 0 + 0i exp(±INFINITY ± INFINITY i) = NaN + NaN i- Specified by:
expin interfaceCalculusFieldElement<Complex>- Returns:
ethis.
-
expm1
public Complex expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<Complex>- Returns:
- exponential minus one of the instance
- Since:
- 1.7
-
log
public Complex log()
Compute the natural logarithm of this complex number. Implements the formula:
where ln on the right hand side islog(a + bi) = ln(|a + bi|) + arg(a + bi)iFastMath.log(double),|a + bi|is the modulus,abs(), andarg(a + bi) =FastMath.atan2(double, double)(b, a).Returns
Infinite (or critical) values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.Examples:
log(1 ± INFINITY i) = INFINITY ± (π/2)i log(INFINITY + i) = INFINITY + 0i log(-INFINITY + i) = INFINITY + πi log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i log(0 + 0i) = -INFINITY + 0i- Specified by:
login interfaceCalculusFieldElement<Complex>- Returns:
- the value
ln this, the natural logarithm ofthis.
-
log1p
public Complex log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<Complex>- Returns:
- logarithm of one plus the instance
- Since:
- 1.7
-
log10
public Complex log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<Complex>- Returns:
- base 10 logarithm of the instance
- Since:
- 1.7
-
pow
public Complex pow(Complex x) throws NullArgumentException
Returns of value of this complex number raised to the power ofx.If
xis a real number whose real part has an integer value, returnspow(int), if boththisandxare real andFastMath.pow(double, double)with the corresponding real arguments would return a finite number (neither NaN nor infinite), then returns the same value converted toComplex, with the same special cases. In all other cases real cases, implements yx = exp(x·log(y)).- Specified by:
powin interfaceCalculusFieldElement<Complex>- Parameters:
x- exponent to which thisComplexis to be raised.- Returns:
thisx.- Throws:
NullArgumentException- if x isnull.
-
pow
public Complex pow(double x)
Returns of value of this complex number raised to the power ofx.If
xhas an integer value, returnspow(int), ifthisis real andFastMath.pow(double, double)with the corresponding real arguments would return a finite number (neither NaN nor infinite), then returns the same value converted toComplex, with the same special cases. In all other cases real cases, implements yx = exp(x·log(y)).- Specified by:
powin interfaceCalculusFieldElement<Complex>- Parameters:
x- exponent to which thisComplexis to be raised.- Returns:
thisx.
-
pow
public Complex pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<Complex>- Parameters:
n- power to apply- Returns:
- thisn
- Since:
- 1.7
-
sin
public Complex sin()
Compute the sine of this complex number. Implements the formula:
where the (real) functions on the right-hand side aresin(a + bi) = sin(a)cosh(b) + cos(a)sinh(b)iFastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
NaNif either real or imaginary part of the input argument isNaN.Infinite values in real or imaginary parts of the input may result in infinite or
NaNvalues returned in parts of the result.Examples:
sin(1 ± INFINITY i) = 1 ± INFINITY i sin(±INFINITY + i) = NaN + NaN i sin(±INFINITY ± INFINITY i) = NaN + NaN i- Specified by:
sinin interfaceCalculusFieldElement<Complex>- Returns:
- the sine of this complex number.
-
sinCos
public FieldSinCos<Complex> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<Complex>- Returns:
- [sin(this), cos(this)]
-
atan2
public Complex atan2(Complex x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<Complex>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
- Since:
- 1.7
-
acosh
public Complex acosh()
Inverse hyperbolic cosine operation.Branch cuts are on the real axis, below +1.
- Specified by:
acoshin interfaceCalculusFieldElement<Complex>- Returns:
- acosh(this)
- Since:
- 1.7
-
asinh
public Complex asinh()
Inverse hyperbolic sine operation.Branch cuts are on the imaginary axis, above +i and below -i.
- Specified by:
asinhin interfaceCalculusFieldElement<Complex>- Returns:
- asin(this)
- Since:
- 1.7
-
atanh
public Complex atanh()
Inverse hyperbolic tangent operation.Branch cuts are on the real axis, above +1 and below -1.
- Specified by:
atanhin interfaceCalculusFieldElement<Complex>- Returns:
- atanh(this)
- Since:
- 1.7
-
sinh
public Complex sinh()
Compute the hyperbolic sine of this complex number. Implements the formula:
where the (real) functions on the right-hand side aresinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)iFastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
NaNif either real or imaginary part of the input argument isNaN.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
sinh(1 ± INFINITY i) = NaN + NaN i sinh(±INFINITY + i) = ± INFINITY + INFINITY i sinh(±INFINITY ± INFINITY i) = NaN + NaN i- Specified by:
sinhin interfaceCalculusFieldElement<Complex>- Returns:
- the hyperbolic sine of
this.
-
sinhCosh
public FieldSinhCosh<Complex> sinhCosh()
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<Complex>- Returns:
- [sinh(this), cosh(this)]
-
sqrt
public Complex sqrt()
Compute the square root of this complex number. Implements the following algorithm to computesqrt(a + bi):- Let
t = sqrt((|a| + |a + bi|) / 2) if
a ≥ 0returnt + (b/2t)ielse return|b|/2t + sign(b)t i
|a| =abs(a)|a + bi| =hypot(a, b)sign(b) =copySign(1, b)
Returns
NaNif either real or imaginary part of the input argument isNaN.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
sqrt(1 ± ∞ i) = ∞ + NaN i sqrt(∞ + i) = ∞ + 0i sqrt(-∞ + i) = 0 + ∞ i sqrt(∞ ± ∞ i) = ∞ + NaN i sqrt(-∞ ± ∞ i) = NaN ± ∞ i- Specified by:
sqrtin interfaceCalculusFieldElement<Complex>- Returns:
- the square root of
thiswith nonnegative real part.
- Let
-
sqrt1z
public Complex sqrt1z()
Compute the square root of1 - this2for this complex number. Computes the result directly assqrt(ONE.subtract(z.square())).Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.- Returns:
- the square root of
1 - this2.
-
cbrt
public Complex cbrt()
Cubic root.This implementation compute the principal cube root by using a branch cut along real negative axis.
- Specified by:
cbrtin interfaceCalculusFieldElement<Complex>- Returns:
- cubic root of the instance
- Since:
- 1.7
-
rootN
public Complex rootN(int n)
Nth root.This implementation compute the principal nth root by using a branch cut along real negative axis.
- Specified by:
rootNin interfaceCalculusFieldElement<Complex>- Parameters:
n- order of the root- Returns:
- nth root of the instance
- Since:
- 1.7
-
tan
public Complex tan()
Compute the tangent of this complex number. Implements the formula:
where the (real) functions on the right-hand side aretan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]iFastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
Infinite (or critical) values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.Examples:
tan(a ± INFINITY i) = 0 ± i tan(±INFINITY + bi) = NaN + NaN i tan(±INFINITY ± INFINITY i) = NaN + NaN i tan(±π/2 + 0 i) = ±INFINITY + NaN i- Specified by:
tanin interfaceCalculusFieldElement<Complex>- Returns:
- the tangent of
this.
-
tanh
public Complex tanh()
Compute the hyperbolic tangent of this complex number. Implements the formula:
where the (real) functions on the right-hand side aretan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]iFastMath.sin(double),FastMath.cos(double),FastMath.cosh(double)andFastMath.sinh(double).Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaNif either real or imaginary part of the input argument isNaN.Examples:
tanh(a ± INFINITY i) = NaN + NaN i tanh(±INFINITY + bi) = ±1 + 0 i tanh(±INFINITY ± INFINITY i) = NaN + NaN i tanh(0 + (π/2)i) = NaN + INFINITY i- Specified by:
tanhin interfaceCalculusFieldElement<Complex>- Returns:
- the hyperbolic tangent of
this.
-
getArgument
public double getArgument()
Compute the argument of this complex number. The argument is the angle phi between the positive real axis and the point representing this number in the complex plane. The value returned is between -PI (not inclusive) and PI (inclusive), with negative values returned for numbers with negative imaginary parts.If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled as
Math.atan2handles them, essentially treating finite parts as zero in the presence of an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite parts. See the javadoc forMath.atan2for full details.- Returns:
- the argument of
this.
-
nthRoot
public List<Complex> nthRoot(int n) throws MathIllegalArgumentException
Computes the n-th roots of this complex number. The nth roots are defined by the formula:
forzk = abs1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))k=0, 1, ..., n-1, whereabsandphiare respectively themodulusandargumentof this complex number.If one or both parts of this complex number is NaN, a list with just one element,
NaNis returned. if neither part is NaN, but at least one part is infinite, the result is a one-element list containingINF.- Parameters:
n- Degree of root.- Returns:
- a List of all
n-th roots ofthis. - Throws:
MathIllegalArgumentException- ifn <= 0.
-
createComplex
protected Complex createComplex(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.- Parameters:
realPart- Real part.imaginaryPart- Imaginary part.- Returns:
- a new complex number instance.
- See Also:
valueOf(double, double)
-
valueOf
public static Complex valueOf(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.- Parameters:
realPart- Real part.imaginaryPart- Imaginary part.- Returns:
- a Complex instance.
-
valueOf
public static Complex valueOf(double realPart)
Create a complex number given only the real part.- Parameters:
realPart- Real part.- Returns:
- a Complex instance.
-
newInstance
public Complex newInstance(double realPart)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<Complex>- Parameters:
realPart- constant real value- Returns:
- instance corresponding to a constant real value
-
readResolve
protected final Object readResolve()
Resolve the transient fields in a deserialized Complex Object. Subclasses will need to overridecreateComplex(double, double)to deserialize properly.- Returns:
- A Complex instance with all fields resolved.
-
getField
public ComplexField getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<Complex>- Returns:
Fieldto which the instance belongs
-
scalb
public Complex scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<Complex>- Parameters:
n- power of 2- Returns:
- this × 2n
- Since:
- 1.7
-
ulp
public Complex ulp()
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulpin interfaceCalculusFieldElement<Complex>- Returns:
- ulp(this)
-
hypot
public Complex hypot(Complex y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<Complex>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
- Since:
- 1.7
-
linearCombination
public Complex linearCombination(Complex[] a, Complex[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match- Since:
- 1.7
-
linearCombination
public Complex linearCombination(double[] a, Complex[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match- Since:
- 1.7
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Complex>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public Complex getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<Complex>- Returns:
- Archimedes constant π
-
ceil
public Complex ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<Complex>- Returns:
- ceil(this)
- Since:
- 1.7
-
floor
public Complex floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<Complex>- Returns:
- floor(this)
- Since:
- 1.7
-
rint
public Complex rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<Complex>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
- Since:
- 1.7
-
remainder
public Complex remainder(double a)
IEEE remainder operator.for complex numbers, the integer n corresponding to
this.subtract(remainder(a)).divide(a)is a Wikipedia - Gaussian integer.- Specified by:
remainderin interfaceCalculusFieldElement<Complex>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
- Since:
- 1.7
-
remainder
public Complex remainder(Complex a)
IEEE remainder operator.for complex numbers, the integer n corresponding to
this.subtract(remainder(a)).divide(a)is a Wikipedia - Gaussian integer.- Specified by:
remainderin interfaceCalculusFieldElement<Complex>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
- Since:
- 1.7
-
sign
public Complex sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<Complex>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
- Since:
- 2.0
-
copySign
public Complex copySign(Complex z)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.The signs of real and imaginary parts are copied independently.
- Specified by:
copySignin interfaceCalculusFieldElement<Complex>- Parameters:
z- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument - Since:
- 1.7
-
copySign
public Complex copySign(double r)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<Complex>- Parameters:
r- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument - Since:
- 1.7
-
toDegrees
public Complex toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<Complex>- Returns:
- instance converted into degrees
-
toRadians
public Complex toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<Complex>- Returns:
- instance converted into radians
-
compareTo
public int compareTo(Complex o)
Comparison us performed using real ordering as the primary sort order and imaginary ordering as the secondary sort order.
- Specified by:
compareToin interfaceComparable<Complex>- Since:
- 3.0
-
-