# Interface Vector<S extends Space,V extends Vector<S,V>>

Type Parameters:
S - Type of the space.
V - Type of vector implementing this interface.
All Superinterfaces:
Blendable<Vector<S,V>>, Point<S>, Serializable
All Known Implementing Classes:
Vector1D, Vector2D, Vector3D

public interface Vector<S extends Space,V extends Vector<S,V>> extends Point<S>, Blendable<Vector<S,V>>
This interface represents a generic vector in a vectorial space or a point in an affine space.
See Also:
• ## Method Summary

Modifier and Type
Method
Description
V
add(double factor, Vector<S,V> v)
Add a scaled vector to the instance.
V
add(Vector<S,V> v)
Add a vector to the instance.
default V
blendArithmeticallyWith(Vector<S,V> other, double blendingValue)
Blend arithmetically this instance with another one.
double
distance1(Vector<S,V> v)
Compute the distance between the instance and another vector according to the L1 norm.
double
distanceInf(Vector<S,V> v)
Compute the distance between the instance and another vector according to the L norm.
double
distanceSq(Vector<S,V> v)
Compute the square of the distance between the instance and another vector.
double
dotProduct(Vector<S,V> v)
Compute the dot-product of the instance and another vector.
double
getNorm()
Get the L2 norm for the vector.
double
getNorm1()
Get the L1 norm for the vector.
double
getNormInf()
Get the L norm for the vector.
double
getNormSq()
Get the square of the norm for the vector.
V
getZero()
Get the null vector of the vectorial space or origin point of the affine space.
boolean
isInfinite()
Returns true if any coordinate of this vector is infinite and none are NaN; false otherwise
V
negate()
Get the opposite of the instance.
default V
normalize()
Get a normalized vector aligned with the instance.
V
scalarMultiply(double a)
Multiply the instance by a scalar.
V
subtract(double factor, Vector<S,V> v)
Subtract a scaled vector from the instance.
V
subtract(Vector<S,V> v)
Subtract a vector from the instance.
String
toString(NumberFormat format)
Get a string representation of this vector.

### Methods inherited from interface org.hipparchus.geometry.Point

distance, getSpace, isNaN
• ## Method Details

• ### getZero

V getZero()
Get the null vector of the vectorial space or origin point of the affine space.
Returns:
null vector of the vectorial space or origin point of the affine space
• ### getNorm1

double getNorm1()
Get the L1 norm for the vector.
Returns:
L1 norm for the vector
• ### getNorm

double getNorm()
Get the L2 norm for the vector.
Returns:
Euclidean norm for the vector
• ### getNormSq

double getNormSq()
Get the square of the norm for the vector.
Returns:
square of the Euclidean norm for the vector
• ### getNormInf

double getNormInf()
Get the L norm for the vector.
Returns:
L norm for the vector
• ### add

V add(Vector<S,V> v)
Add a vector to the instance.
Parameters:
v - vector to add
Returns:
a new vector
• ### add

V add(double factor, Vector<S,V> v)
Add a scaled vector to the instance.
Parameters:
factor - scale factor to apply to v before adding it
v - vector to add
Returns:
a new vector
• ### subtract

V subtract(Vector<S,V> v)
Subtract a vector from the instance.
Parameters:
v - vector to subtract
Returns:
a new vector
• ### subtract

V subtract(double factor, Vector<S,V> v)
Subtract a scaled vector from the instance.
Parameters:
factor - scale factor to apply to v before subtracting it
v - vector to subtract
Returns:
a new vector
• ### negate

V negate()
Get the opposite of the instance.
Returns:
a new vector which is opposite to the instance
• ### normalize

default V normalize() throws MathRuntimeException
Get a normalized vector aligned with the instance.
Returns:
a new normalized vector
Throws:
MathRuntimeException - if the norm is zero
• ### scalarMultiply

V scalarMultiply(double a)
Multiply the instance by a scalar.
Parameters:
a - scalar
Returns:
a new vector
• ### isInfinite

boolean isInfinite()
Returns true if any coordinate of this vector is infinite and none are NaN; false otherwise
Returns:
true if any coordinate of this vector is infinite and none are NaN; false otherwise
• ### distance1

double distance1(Vector<S,V> v)
Compute the distance between the instance and another vector according to the L1 norm.

Calling this method is equivalent to calling: q.subtract(p).getNorm1() except that no intermediate vector is built

Parameters:
v - second vector
Returns:
the distance between the instance and p according to the L1 norm
• ### distanceInf

double distanceInf(Vector<S,V> v)
Compute the distance between the instance and another vector according to the L norm.

Calling this method is equivalent to calling: q.subtract(p).getNormInf() except that no intermediate vector is built

Parameters:
v - second vector
Returns:
the distance between the instance and p according to the L norm
• ### distanceSq

double distanceSq(Vector<S,V> v)
Compute the square of the distance between the instance and another vector.

Calling this method is equivalent to calling: q.subtract(p).getNormSq() except that no intermediate vector is built

Parameters:
v - second vector
Returns:
the square of the distance between the instance and p
• ### dotProduct

double dotProduct(Vector<S,V> v)
Compute the dot-product of the instance and another vector.
Parameters:
v - second vector
Returns:
the dot product this.v
• ### toString

String toString(NumberFormat format)
Get a string representation of this vector.
Parameters:
format - the custom format for components
Returns:
a string representation of this vector
• ### blendArithmeticallyWith

default V blendArithmeticallyWith(Vector<S,V> other, double blendingValue) throws MathIllegalArgumentException
Blend arithmetically this instance with another one.
Specified by:
blendArithmeticallyWith in interface Blendable<S extends Space>
Parameters:
other - other instance to blend arithmetically with
blendingValue - value from smoothstep function B(x). It is expected to be between [0:1] and will throw an exception otherwise.
Returns:
this * (1 - B(x)) + other * B(x)
Throws:
MathIllegalArgumentException - if blending value is not within [0:1]