Uses of Class
org.hipparchus.exception.MathRuntimeException
-
Packages that use MathRuntimeException Package Description org.hipparchus Common classes used throughout the Hipparchus library.org.hipparchus.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.hipparchus.analysis.interpolation Univariate real functions interpolation algorithms.org.hipparchus.exception Specialized exceptions for algorithms errors.org.hipparchus.linear Linear algebra support.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of MathRuntimeException in org.hipparchus
Methods in org.hipparchus that throw MathRuntimeException Modifier and Type Method Description TFieldElement. divide(T a)Compute this ÷ a.TFieldElement. reciprocal()Returns the multiplicative inverse ofthiselement. -
Uses of MathRuntimeException in org.hipparchus.analysis.differentiation
Methods in org.hipparchus.analysis.differentiation that throw MathRuntimeException Modifier and Type Method Description doubleDerivativeStructure. taylor(double... delta)Evaluate Taylor expansion a derivative structure.doubleDSCompiler. taylor(double[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)Evaluate Taylor expansion of a derivative structure.TFieldDerivativeStructure. taylor(double... delta)Evaluate Taylor expansion of a derivative structure.TFieldDerivativeStructure. taylor(T... delta)Evaluate Taylor expansion of a derivative structure. -
Uses of MathRuntimeException in org.hipparchus.analysis.interpolation
Methods in org.hipparchus.analysis.interpolation that throw MathRuntimeException Modifier and Type Method Description voidFieldHermiteInterpolator. addSamplePoint(T x, T[]... value)Add a sample point.voidHermiteInterpolator. addSamplePoint(double x, double[]... value)Add a sample point. -
Uses of MathRuntimeException in org.hipparchus.exception
Subclasses of MathRuntimeException in org.hipparchus.exception Modifier and Type Class Description classMathIllegalArgumentExceptionBase class for all preconditions violation exceptions.classMathIllegalStateExceptionBase class for all exceptions that signal that the process throwing the exception is in a state that does not comply with the set of states that it is designed to be in.Methods in org.hipparchus.exception that return MathRuntimeException Modifier and Type Method Description static MathRuntimeExceptionMathRuntimeException. createInternalError()Create an exception for an internal error.static MathRuntimeExceptionMathRuntimeException. createInternalError(Throwable cause)Create an exception for an internal error. -
Uses of MathRuntimeException in org.hipparchus.linear
Methods in org.hipparchus.linear that throw MathRuntimeException Modifier and Type Method Description doubleRealVector. cosine(RealVector v)Computes the cosine of the angle between this vector and the argument.ArrayFieldVector<T>ArrayFieldVector. ebeDivide(ArrayFieldVector<T> v)Element-by-element division.FieldVector<T>ArrayFieldVector. ebeDivide(FieldVector<T> v)Element-by-element division.FieldVector<T>FieldVector. ebeDivide(FieldVector<T> v)Element-by-element division.FieldVector<T>SparseFieldVector. ebeDivide(FieldVector<T> v)Element-by-element division.booleanRealVector. equals(Object other)Test for the equality of two real vectors.intRealVector. hashCode().FieldVector<T>ArrayFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapInv()Map the 1/x function to each entry.FieldVector<T>FieldVector. mapInv()Map the 1/x function to each entry.FieldVector<T>SparseFieldVector. mapInv()Map the 1/x function to each entry.FieldVector<T>ArrayFieldVector. mapInvToSelf()Map the 1/x function to each entry.FieldVector<T>FieldVector. mapInvToSelf()Map the 1/x function to each entry.FieldVector<T>SparseFieldVector. mapInvToSelf()Map the 1/x function to each entry.ArrayFieldVector<T>ArrayFieldVector. projection(ArrayFieldVector<T> v)Find the orthogonal projection of this vector onto another vector.FieldVector<T>ArrayFieldVector. projection(FieldVector<T> v)Find the orthogonal projection of this vector onto another vector.FieldVector<T>FieldVector. projection(FieldVector<T> v)Find the orthogonal projection of this vector onto another vector.RealVectorRealVector. projection(RealVector v)Find the orthogonal projection of this vector onto another vector.FieldVector<T>SparseFieldVector. projection(FieldVector<T> v)Find the orthogonal projection of this vector onto another vector.voidRealVector.SparseEntryIterator. remove()static voidMatrixUtils. solveLowerTriangularSystem(RealMatrix rm, RealVector b)Solve a system of composed of a Lower Triangular MatrixRealMatrix.static voidMatrixUtils. solveUpperTriangularSystem(RealMatrix rm, RealVector b)Solver a system composed of an Upper Triangular MatrixRealMatrix.voidOpenMapRealVector. unitize()Converts this vector into a unit vector.voidRealVector. unitize()Converts this vector into a unit vector.OpenMapRealVectorOpenMapRealVector. unitVector()Creates a unit vector pointing in the direction of this vector.RealVectorRealVector. unitVector()Creates a unit vector pointing in the direction of this vector.Constructors in org.hipparchus.linear that throw MathRuntimeException Constructor Description EigenDecompositionNonSymmetric(RealMatrix matrix, double epsilon)Calculates the eigen decomposition of the given real matrix.EigenDecompositionSymmetric(RealMatrix matrix, double epsilon, boolean decreasing)Calculates the eigen decomposition of the given real matrix. -
Uses of MathRuntimeException in org.hipparchus.util
Methods in org.hipparchus.util that throw MathRuntimeException Modifier and Type Method Description static intArithmeticUtils. addAndCheck(int x, int y)Add two integers, checking for overflow.static longArithmeticUtils. addAndCheck(long a, long b)Add two long integers, checking for overflow.static intFastMath. addExact(int a, int b)Add two numbers, detecting overflows.static longFastMath. addExact(long a, long b)Add two numbers, detecting overflows.static longCombinatoricsUtils. binomialCoefficient(int n, int k)Returns an exact representation of the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static doubleCombinatoricsUtils. binomialCoefficientDouble(int n, int k)Returns adoublerepresentation of the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static doubleCombinatoricsUtils. binomialCoefficientLog(int n, int k)Returns the naturallogof the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static intFastMath. ceilDiv(int a, int b)Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath. ceilDiv(long a, int b)Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath. ceilDiv(long a, long b)Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath. ceilDivExact(int a, int b)Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath. ceilDivExact(long a, long b)Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath. ceilMod(int a, int b)Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath. ceilMod(long a, int b)Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath. ceilMod(long a, long b)Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static byteMathUtils. copySign(byte magnitude, byte sign)Returns the first argument with the sign of the second argument.static intMathUtils. copySign(int magnitude, int sign)Returns the first argument with the sign of the second argument.static longMathUtils. copySign(long magnitude, long sign)Returns the first argument with the sign of the second argument.static shortMathUtils. copySign(short magnitude, short sign)Returns the first argument with the sign of the second argument.static intFastMath. decrementExact(int n)Decrement a number, detecting overflows.static longFastMath. decrementExact(long n)Decrement a number, detecting overflows.BigRealBigReal. divide(BigReal a)Compute this ÷ a.static intFastMath. floorDiv(int a, int b)Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath. floorDiv(long a, int b)Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath. floorDiv(long a, long b)Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intFastMath. floorDivExact(int a, int b)Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath. floorDivExact(long a, long b)Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intFastMath. floorMod(int a, int b)Finds r such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intArithmeticUtils. gcd(int p, int q)Computes the greatest common divisor of the absolute value of two numbers, using a modified version of the "binary gcd" method.static longArithmeticUtils. gcd(long p, long q)Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.static intFastMath. incrementExact(int n)Increment a number, detecting overflows.static longFastMath. incrementExact(long n)Increment a number, detecting overflows.static intArithmeticUtils. lcm(int a, int b)Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b.static longArithmeticUtils. lcm(long a, long b)Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b.static intArithmeticUtils. mulAndCheck(int x, int y)Multiply two integers, checking for overflow.static longArithmeticUtils. mulAndCheck(long a, long b)Multiply two long integers, checking for overflow.static double[]MathArrays. normalizeArray(double[] values, double normalizedSum)Normalizes an array to make it sum to a specified value.static intArithmeticUtils. pow(int k, int e)Raise an int to an int power.static longArithmeticUtils. pow(long k, int e)Raise a long to an int power.BigRealBigReal. reciprocal()Returns the multiplicative inverse ofthiselement.static floatPrecision. round(float x, int scale, RoundingMode roundingMethod)Rounds the given value to the specified number of decimal places.static longCombinatoricsUtils. stirlingS2(int n, int k)Returns the Stirling number of the second kind, "S(n,k)", the number of ways of partitioning ann-element set intoknon-empty subsets.static intArithmeticUtils. subAndCheck(int x, int y)Subtract two integers, checking for overflow.static longArithmeticUtils. subAndCheck(long a, long b)Subtract two long integers, checking for overflow.static intFastMath. toIntExact(long n)Convert a long to interger, detecting overflows
-