1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.linear;
24
25 import java.util.Arrays;
26
27 import org.hipparchus.exception.LocalizedCoreFormats;
28 import org.hipparchus.exception.MathIllegalArgumentException;
29 import org.hipparchus.util.FastMath;
30
31
32 /**
33 * Calculates the QR-decomposition of a matrix.
34 * <p>The QR-decomposition of a matrix A consists of two matrices Q and R
35 * that satisfy: A = QR, Q is orthogonal (Q<sup>T</sup>Q = I), and R is
36 * upper triangular. If A is m×n, Q is m×m and R m×n.</p>
37 * <p>This class compute the decomposition using Householder reflectors.</p>
38 * <p>For efficiency purposes, the decomposition in packed form is transposed.
39 * This allows inner loop to iterate inside rows, which is much more cache-efficient
40 * in Java.</p>
41 * <p>This class is based on the class with similar name from the
42 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
43 * following changes:</p>
44 * <ul>
45 * <li>a {@link #getQT() getQT} method has been added,</li>
46 * <li>the {@code solve} and {@code isFullRank} methods have been replaced
47 * by a {@link #getSolver() getSolver} method and the equivalent methods
48 * provided by the returned {@link DecompositionSolver}.</li>
49 * </ul>
50 *
51 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
52 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
53 *
54 */
55 public class QRDecomposition {
56 /**
57 * A packed TRANSPOSED representation of the QR decomposition.
58 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
59 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
60 * from which an explicit form of Q can be recomputed if desired.</p>
61 */
62 private double[][] qrt;
63 /** The diagonal elements of R. */
64 private double[] rDiag;
65 /** Cached value of Q. */
66 private RealMatrix cachedQ;
67 /** Cached value of QT. */
68 private RealMatrix cachedQT;
69 /** Cached value of R. */
70 private RealMatrix cachedR;
71 /** Cached value of H. */
72 private RealMatrix cachedH;
73 /** Singularity threshold. */
74 private final double threshold;
75
76 /**
77 * Calculates the QR-decomposition of the given matrix.
78 * The singularity threshold defaults to zero.
79 *
80 * @param matrix The matrix to decompose.
81 *
82 * @see #QRDecomposition(RealMatrix,double)
83 */
84 public QRDecomposition(RealMatrix matrix) {
85 this(matrix, 0d);
86 }
87
88 /**
89 * Calculates the QR-decomposition of the given matrix.
90 *
91 * @param matrix The matrix to decompose.
92 * @param threshold Singularity threshold.
93 */
94 public QRDecomposition(RealMatrix matrix,
95 double threshold) {
96 this.threshold = threshold;
97
98 final int m = matrix.getRowDimension();
99 final int n = matrix.getColumnDimension();
100 qrt = matrix.transpose().getData();
101 rDiag = new double[FastMath.min(m, n)];
102 cachedQ = null;
103 cachedQT = null;
104 cachedR = null;
105 cachedH = null;
106
107 decompose(qrt);
108
109 }
110
111 /** Decompose matrix.
112 * @param matrix transposed matrix
113 */
114 protected void decompose(double[][] matrix) {
115 for (int minor = 0; minor < FastMath.min(matrix.length, matrix[0].length); minor++) {
116 performHouseholderReflection(minor, matrix);
117 }
118 }
119
120 /** Perform Householder reflection for a minor A(minor, minor) of A.
121 * @param minor minor index
122 * @param matrix transposed matrix
123 */
124 protected void performHouseholderReflection(int minor, double[][] matrix) {
125
126 final double[] qrtMinor = matrix[minor];
127
128 /*
129 * Let x be the first column of the minor, and a^2 = |x|^2.
130 * x will be in the positions qr[minor][minor] through qr[m][minor].
131 * The first column of the transformed minor will be (a,0,0,..)'
132 * The sign of a is chosen to be opposite to the sign of the first
133 * component of x. Let's find a:
134 */
135 double xNormSqr = 0;
136 for (int row = minor; row < qrtMinor.length; row++) {
137 final double c = qrtMinor[row];
138 xNormSqr += c * c;
139 }
140 final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
141 rDiag[minor] = a;
142
143 if (a != 0.0) {
144
145 /*
146 * Calculate the normalized reflection vector v and transform
147 * the first column. We know the norm of v beforehand: v = x-ae
148 * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
149 * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
150 * Here <x, e> is now qr[minor][minor].
151 * v = x-ae is stored in the column at qr:
152 */
153 qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
154
155 /*
156 * Transform the rest of the columns of the minor:
157 * They will be transformed by the matrix H = I-2vv'/|v|^2.
158 * If x is a column vector of the minor, then
159 * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
160 * Therefore the transformation is easily calculated by
161 * subtracting the column vector (2<x,v>/|v|^2)v from x.
162 *
163 * Let 2<x,v>/|v|^2 = alpha. From above we have
164 * |v|^2 = -2a*(qr[minor][minor]), so
165 * alpha = -<x,v>/(a*qr[minor][minor])
166 */
167 for (int col = minor+1; col < matrix.length; col++) {
168 final double[] qrtCol = matrix[col];
169 double alpha = 0;
170 for (int row = minor; row < qrtCol.length; row++) {
171 alpha -= qrtCol[row] * qrtMinor[row];
172 }
173 alpha /= a * qrtMinor[minor];
174
175 // Subtract the column vector alpha*v from x.
176 for (int row = minor; row < qrtCol.length; row++) {
177 qrtCol[row] -= alpha * qrtMinor[row];
178 }
179 }
180 }
181 }
182
183
184 /**
185 * Returns the matrix R of the decomposition.
186 * <p>R is an upper-triangular matrix</p>
187 * @return the R matrix
188 */
189 public RealMatrix getR() {
190
191 if (cachedR == null) {
192
193 // R is supposed to be m x n
194 final int n = qrt.length;
195 final int m = qrt[0].length;
196 double[][] ra = new double[m][n];
197 // copy the diagonal from rDiag and the upper triangle of qr
198 for (int row = FastMath.min(m, n) - 1; row >= 0; row--) {
199 ra[row][row] = rDiag[row];
200 for (int col = row + 1; col < n; col++) {
201 ra[row][col] = qrt[col][row];
202 }
203 }
204 cachedR = MatrixUtils.createRealMatrix(ra);
205 }
206
207 // return the cached matrix
208 return cachedR;
209 }
210
211 /**
212 * Returns the matrix Q of the decomposition.
213 * <p>Q is an orthogonal matrix</p>
214 * @return the Q matrix
215 */
216 public RealMatrix getQ() {
217 if (cachedQ == null) {
218 cachedQ = getQT().transpose();
219 }
220 return cachedQ;
221 }
222
223 /**
224 * Returns the transpose of the matrix Q of the decomposition.
225 * <p>Q is an orthogonal matrix</p>
226 * @return the transpose of the Q matrix, Q<sup>T</sup>
227 */
228 public RealMatrix getQT() {
229 if (cachedQT == null) {
230
231 // QT is supposed to be m x m
232 final int n = qrt.length;
233 final int m = qrt[0].length;
234 double[][] qta = new double[m][m];
235
236 /*
237 * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then
238 * applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in
239 * succession to the result
240 */
241 for (int minor = m - 1; minor >= FastMath.min(m, n); minor--) {
242 qta[minor][minor] = 1.0d;
243 }
244
245 for (int minor = FastMath.min(m, n)-1; minor >= 0; minor--){
246 final double[] qrtMinor = qrt[minor];
247 qta[minor][minor] = 1.0d;
248 if (qrtMinor[minor] != 0.0) {
249 for (int col = minor; col < m; col++) {
250 double alpha = 0;
251 for (int row = minor; row < m; row++) {
252 alpha -= qta[col][row] * qrtMinor[row];
253 }
254 alpha /= rDiag[minor] * qrtMinor[minor];
255
256 for (int row = minor; row < m; row++) {
257 qta[col][row] += -alpha * qrtMinor[row];
258 }
259 }
260 }
261 }
262 cachedQT = MatrixUtils.createRealMatrix(qta);
263 }
264
265 // return the cached matrix
266 return cachedQT;
267 }
268
269 /**
270 * Returns the Householder reflector vectors.
271 * <p>H is a lower trapezoidal matrix whose columns represent
272 * each successive Householder reflector vector. This matrix is used
273 * to compute Q.</p>
274 * @return a matrix containing the Householder reflector vectors
275 */
276 public RealMatrix getH() {
277 if (cachedH == null) {
278
279 final int n = qrt.length;
280 final int m = qrt[0].length;
281 double[][] ha = new double[m][n];
282 for (int i = 0; i < m; ++i) {
283 for (int j = 0; j < FastMath.min(i + 1, n); ++j) {
284 ha[i][j] = qrt[j][i] / -rDiag[j];
285 }
286 }
287 cachedH = MatrixUtils.createRealMatrix(ha);
288 }
289
290 // return the cached matrix
291 return cachedH;
292 }
293
294 /**
295 * Get a solver for finding the A × X = B solution in least square sense.
296 * <p>
297 * Least Square sense means a solver can be computed for an overdetermined system,
298 * (i.e. a system with more equations than unknowns, which corresponds to a tall A
299 * matrix with more rows than columns). In any case, if the matrix is singular
300 * within the tolerance set at {@link QRDecomposition#QRDecomposition(RealMatrix,
301 * double) construction}, an error will be triggered when
302 * the {@link DecompositionSolver#solve(RealVector) solve} method will be called.
303 * </p>
304 * @return a solver
305 */
306 public DecompositionSolver getSolver() {
307 return new Solver();
308 }
309
310 /** Specialized solver. */
311 private class Solver implements DecompositionSolver {
312
313 /** {@inheritDoc} */
314 @Override
315 public boolean isNonSingular() {
316 return !checkSingular(rDiag, threshold, false);
317 }
318
319 /** {@inheritDoc} */
320 @Override
321 public RealVector solve(RealVector b) {
322 final int n = qrt.length;
323 final int m = qrt[0].length;
324 if (b.getDimension() != m) {
325 throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
326 b.getDimension(), m);
327 }
328 checkSingular(rDiag, threshold, true);
329
330 final double[] x = new double[n];
331 final double[] y = b.toArray();
332
333 // apply Householder transforms to solve Q.y = b
334 for (int minor = 0; minor < FastMath.min(m, n); minor++) {
335
336 final double[] qrtMinor = qrt[minor];
337 double dotProduct = 0;
338 for (int row = minor; row < m; row++) {
339 dotProduct += y[row] * qrtMinor[row];
340 }
341 dotProduct /= rDiag[minor] * qrtMinor[minor];
342
343 for (int row = minor; row < m; row++) {
344 y[row] += dotProduct * qrtMinor[row];
345 }
346 }
347
348 // solve triangular system R.x = y
349 for (int row = rDiag.length - 1; row >= 0; --row) {
350 y[row] /= rDiag[row];
351 final double yRow = y[row];
352 final double[] qrtRow = qrt[row];
353 x[row] = yRow;
354 for (int i = 0; i < row; i++) {
355 y[i] -= yRow * qrtRow[i];
356 }
357 }
358
359 return new ArrayRealVector(x, false);
360 }
361
362 /** {@inheritDoc} */
363 @Override
364 public RealMatrix solve(RealMatrix b) {
365 final int n = qrt.length;
366 final int m = qrt[0].length;
367 if (b.getRowDimension() != m) {
368 throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
369 b.getRowDimension(), m);
370 }
371 checkSingular(rDiag, threshold, true);
372
373 final int columns = b.getColumnDimension();
374 final int blockSize = BlockRealMatrix.BLOCK_SIZE;
375 final int cBlocks = (columns + blockSize - 1) / blockSize;
376 final double[][] xBlocks = BlockRealMatrix.createBlocksLayout(n, columns);
377 final double[][] y = new double[b.getRowDimension()][blockSize];
378 final double[] alpha = new double[blockSize];
379
380 for (int kBlock = 0; kBlock < cBlocks; ++kBlock) {
381 final int kStart = kBlock * blockSize;
382 final int kEnd = FastMath.min(kStart + blockSize, columns);
383 final int kWidth = kEnd - kStart;
384
385 // get the right hand side vector
386 b.copySubMatrix(0, m - 1, kStart, kEnd - 1, y);
387
388 // apply Householder transforms to solve Q.y = b
389 for (int minor = 0; minor < FastMath.min(m, n); minor++) {
390 final double[] qrtMinor = qrt[minor];
391 final double factor = 1.0 / (rDiag[minor] * qrtMinor[minor]);
392
393 Arrays.fill(alpha, 0, kWidth, 0.0);
394 for (int row = minor; row < m; ++row) {
395 final double d = qrtMinor[row];
396 final double[] yRow = y[row];
397 for (int k = 0; k < kWidth; ++k) {
398 alpha[k] += d * yRow[k];
399 }
400 }
401 for (int k = 0; k < kWidth; ++k) {
402 alpha[k] *= factor;
403 }
404
405 for (int row = minor; row < m; ++row) {
406 final double d = qrtMinor[row];
407 final double[] yRow = y[row];
408 for (int k = 0; k < kWidth; ++k) {
409 yRow[k] += alpha[k] * d;
410 }
411 }
412 }
413
414 // solve triangular system R.x = y
415 for (int j = rDiag.length - 1; j >= 0; --j) {
416 final int jBlock = j / blockSize;
417 final int jStart = jBlock * blockSize;
418 final double factor = 1.0 / rDiag[j];
419 final double[] yJ = y[j];
420 final double[] xBlock = xBlocks[jBlock * cBlocks + kBlock];
421 int index = (j - jStart) * kWidth;
422 for (int k = 0; k < kWidth; ++k) {
423 yJ[k] *= factor;
424 xBlock[index++] = yJ[k];
425 }
426
427 final double[] qrtJ = qrt[j];
428 for (int i = 0; i < j; ++i) {
429 final double rIJ = qrtJ[i];
430 final double[] yI = y[i];
431 for (int k = 0; k < kWidth; ++k) {
432 yI[k] -= yJ[k] * rIJ;
433 }
434 }
435 }
436 }
437
438 return new BlockRealMatrix(n, columns, xBlocks, false);
439 }
440
441 /**
442 * {@inheritDoc}
443 * @throws MathIllegalArgumentException if the decomposed matrix is singular.
444 */
445 @Override
446 public RealMatrix getInverse() {
447 return solve(MatrixUtils.createRealIdentityMatrix(qrt[0].length));
448 }
449
450 /**
451 * Check singularity.
452 *
453 * @param diag Diagonal elements of the R matrix.
454 * @param min Singularity threshold.
455 * @param raise Whether to raise a {@link MathIllegalArgumentException}
456 * if any element of the diagonal fails the check.
457 * @return {@code true} if any element of the diagonal is smaller
458 * or equal to {@code min}.
459 * @throws MathIllegalArgumentException if the matrix is singular and
460 * {@code raise} is {@code true}.
461 */
462 private boolean checkSingular(double[] diag, double min, boolean raise) {
463 for (final double d : diag) {
464 if (FastMath.abs(d) <= min) {
465 if (raise) {
466 throw new MathIllegalArgumentException(LocalizedCoreFormats.SINGULAR_MATRIX);
467 } else {
468 return true;
469 }
470 }
471 }
472 return false;
473 }
474
475 /** {@inheritDoc} */
476 @Override
477 public int getRowDimension() {
478 return qrt[0].length;
479 }
480
481 /** {@inheritDoc} */
482 @Override
483 public int getColumnDimension() {
484 return qrt.length;
485 }
486
487 }
488 }