1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.fitting;
23
24 import java.util.ArrayList;
25 import java.util.Collection;
26 import java.util.List;
27
28 import org.hipparchus.analysis.function.HarmonicOscillator;
29 import org.hipparchus.exception.LocalizedCoreFormats;
30 import org.hipparchus.exception.MathIllegalArgumentException;
31 import org.hipparchus.exception.MathIllegalStateException;
32 import org.hipparchus.linear.DiagonalMatrix;
33 import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
34 import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
35 import org.hipparchus.util.FastMath;
36 import org.hipparchus.util.SinCos;
37
38 /**
39 * Fits points to a {@link
40 * org.hipparchus.analysis.function.HarmonicOscillator.Parametric harmonic oscillator}
41 * function.
42 * <br>
43 * The {@link #withStartPoint(double[]) initial guess values} must be passed
44 * in the following order:
45 * <ul>
46 * <li>Amplitude</li>
47 * <li>Angular frequency</li>
48 * <li>phase</li>
49 * </ul>
50 * The optimal values will be returned in the same order.
51 *
52 */
53 public class HarmonicCurveFitter extends AbstractCurveFitter {
54 /** Parametric function to be fitted. */
55 private static final HarmonicOscillator.Parametric FUNCTION = new HarmonicOscillator.Parametric();
56 /** Initial guess. */
57 private final double[] initialGuess;
58 /** Maximum number of iterations of the optimization algorithm. */
59 private final int maxIter;
60
61 /**
62 * Constructor used by the factory methods.
63 *
64 * @param initialGuess Initial guess. If set to {@code null}, the initial guess
65 * will be estimated using the {@link ParameterGuesser}.
66 * @param maxIter Maximum number of iterations of the optimization algorithm.
67 */
68 private HarmonicCurveFitter(double[] initialGuess, int maxIter) {
69 this.initialGuess = initialGuess == null ? null : initialGuess.clone();
70 this.maxIter = maxIter;
71 }
72
73 /**
74 * Creates a default curve fitter.
75 * The initial guess for the parameters will be {@link ParameterGuesser}
76 * computed automatically, and the maximum number of iterations of the
77 * optimization algorithm is set to {@link Integer#MAX_VALUE}.
78 *
79 * @return a curve fitter.
80 *
81 * @see #withStartPoint(double[])
82 * @see #withMaxIterations(int)
83 */
84 public static HarmonicCurveFitter create() {
85 return new HarmonicCurveFitter(null, Integer.MAX_VALUE);
86 }
87
88 /**
89 * Configure the start point (initial guess).
90 * @param newStart new start point (initial guess)
91 * @return a new instance.
92 */
93 public HarmonicCurveFitter withStartPoint(double[] newStart) {
94 return new HarmonicCurveFitter(newStart.clone(),
95 maxIter);
96 }
97
98 /**
99 * Configure the maximum number of iterations.
100 * @param newMaxIter maximum number of iterations
101 * @return a new instance.
102 */
103 public HarmonicCurveFitter withMaxIterations(int newMaxIter) {
104 return new HarmonicCurveFitter(initialGuess,
105 newMaxIter);
106 }
107
108 /** {@inheritDoc} */
109 @Override
110 protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
111 // Prepare least-squares problem.
112 final int len = observations.size();
113 final double[] target = new double[len];
114 final double[] weights = new double[len];
115
116 int i = 0;
117 for (WeightedObservedPoint obs : observations) {
118 target[i] = obs.getY();
119 weights[i] = obs.getWeight();
120 ++i;
121 }
122
123 final AbstractCurveFitter.TheoreticalValuesFunction model
124 = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION,
125 observations);
126
127 final double[] startPoint = initialGuess != null ?
128 initialGuess :
129 // Compute estimation.
130 new ParameterGuesser(observations).guess();
131
132 // Return a new optimizer set up to fit a Gaussian curve to the
133 // observed points.
134 return new LeastSquaresBuilder().
135 maxEvaluations(Integer.MAX_VALUE).
136 maxIterations(maxIter).
137 start(startPoint).
138 target(target).
139 weight(new DiagonalMatrix(weights)).
140 model(model.getModelFunction(), model.getModelFunctionJacobian()).
141 build();
142
143 }
144
145 /**
146 * This class guesses harmonic coefficients from a sample.
147 * <p>The algorithm used to guess the coefficients is as follows:</p>
148 *
149 * <p>We know \( f(t) \) at some sampling points \( t_i \) and want
150 * to find \( a \), \( \omega \) and \( \phi \) such that
151 * \( f(t) = a \cos (\omega t + \phi) \).
152 * </p>
153 *
154 * <p>From the analytical expression, we can compute two primitives :
155 * \[
156 * If2(t) = \int f^2 dt = a^2 (t + S(t)) / 2
157 * \]
158 * \[
159 * If'2(t) = \int f'^2 dt = a^2 \omega^2 (t - S(t)) / 2
160 * \]
161 * where \(S(t) = \frac{\sin(2 (\omega t + \phi))}{2\omega}\)
162 * </p>
163 *
164 * <p>We can remove \(S\) between these expressions :
165 * \[
166 * If'2(t) = a^2 \omega^2 t - \omega^2 If2(t)
167 * \]
168 * </p>
169 *
170 * <p>The preceding expression shows that \(If'2 (t)\) is a linear
171 * combination of both \(t\) and \(If2(t)\):
172 * \[
173 * If'2(t) = A t + B If2(t)
174 * \]
175 * </p>
176 *
177 * <p>From the primitive, we can deduce the same form for definite
178 * integrals between \(t_1\) and \(t_i\) for each \(t_i\) :
179 * \[
180 * If2(t_i) - If2(t_1) = A (t_i - t_1) + B (If2 (t_i) - If2(t_1))
181 * \]
182 * </p>
183 *
184 * <p>We can find the coefficients \(A\) and \(B\) that best fit the sample
185 * to this linear expression by computing the definite integrals for
186 * each sample points.
187 * </p>
188 *
189 * <p>For a bilinear expression \(z(x_i, y_i) = A x_i + B y_i\), the
190 * coefficients \(A\) and \(B\) that minimize a least-squares criterion
191 * \(\sum (z_i - z(x_i, y_i))^2\) are given by these expressions:</p>
192 * \[
193 * A = \frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i}
194 * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
195 * \]
196 * \[
197 * B = \frac{\sum x_i x_i \sum y_i z_i - \sum x_i y_i \sum x_i z_i}
198 * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
199 *
200 * \]
201 *
202 * <p>In fact, we can assume that both \(a\) and \(\omega\) are positive and
203 * compute them directly, knowing that \(A = a^2 \omega^2\) and that
204 * \(B = -\omega^2\). The complete algorithm is therefore:</p>
205 *
206 * For each \(t_i\) from \(t_1\) to \(t_{n-1}\), compute:
207 * \[ f(t_i) \]
208 * \[ f'(t_i) = \frac{f (t_{i+1}) - f(t_{i-1})}{t_{i+1} - t_{i-1}} \]
209 * \[ x_i = t_i - t_1 \]
210 * \[ y_i = \int_{t_1}^{t_i} f^2(t) dt \]
211 * \[ z_i = \int_{t_1}^{t_i} f'^2(t) dt \]
212 * and update the sums:
213 * \[ \sum x_i x_i, \sum y_i y_i, \sum x_i y_i, \sum x_i z_i, \sum y_i z_i \]
214 *
215 * Then:
216 * \[
217 * a = \sqrt{\frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i }
218 * {\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i }}
219 * \]
220 * \[
221 * \omega = \sqrt{\frac{\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i}
222 * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}}
223 * \]
224 *
225 * <p>Once we know \(\omega\) we can compute:
226 * \[
227 * fc = \omega f(t) \cos(\omega t) - f'(t) \sin(\omega t)
228 * \]
229 * \[
230 * fs = \omega f(t) \sin(\omega t) + f'(t) \cos(\omega t)
231 * \]
232 * </p>
233 *
234 * <p>It appears that \(fc = a \omega \cos(\phi)\) and
235 * \(fs = -a \omega \sin(\phi)\), so we can use these
236 * expressions to compute \(\phi\). The best estimate over the sample is
237 * given by averaging these expressions.
238 * </p>
239 *
240 * <p>Since integrals and means are involved in the preceding
241 * estimations, these operations run in \(O(n)\) time, where \(n\) is the
242 * number of measurements.</p>
243 */
244 public static class ParameterGuesser {
245 /** Amplitude. */
246 private final double a;
247 /** Angular frequency. */
248 private final double omega;
249 /** Phase. */
250 private final double phi;
251
252 /**
253 * Simple constructor.
254 *
255 * @param observations Sampled observations.
256 * @throws MathIllegalArgumentException if the sample is too short.
257 * @throws MathIllegalArgumentException if the abscissa range is zero.
258 * @throws MathIllegalStateException when the guessing procedure cannot
259 * produce sensible results.
260 */
261 public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
262 if (observations.size() < 4) {
263 throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
264 observations.size(), 4, true);
265 }
266
267 final WeightedObservedPoint[] sorted
268 = sortObservations(observations).toArray(new WeightedObservedPoint[0]);
269
270 final double[] aOmega = guessAOmega(sorted);
271 a = aOmega[0];
272 omega = aOmega[1];
273
274 phi = guessPhi(sorted);
275 }
276
277 /**
278 * Gets an estimation of the parameters.
279 *
280 * @return the guessed parameters, in the following order:
281 * <ul>
282 * <li>Amplitude</li>
283 * <li>Angular frequency</li>
284 * <li>Phase</li>
285 * </ul>
286 */
287 public double[] guess() {
288 return new double[] { a, omega, phi };
289 }
290
291 /**
292 * Sort the observations with respect to the abscissa.
293 *
294 * @param unsorted Input observations.
295 * @return the input observations, sorted.
296 */
297 private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
298 final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
299
300 // Since the samples are almost always already sorted, this
301 // method is implemented as an insertion sort that reorders the
302 // elements in place. Insertion sort is very efficient in this case.
303 WeightedObservedPoint curr = observations.get(0);
304 final int len = observations.size();
305 for (int j = 1; j < len; j++) {
306 WeightedObservedPoint prec = curr;
307 curr = observations.get(j);
308 if (curr.getX() < prec.getX()) {
309 // the current element should be inserted closer to the beginning
310 int i = j - 1;
311 WeightedObservedPoint mI = observations.get(i);
312 while ((i >= 0) && (curr.getX() < mI.getX())) {
313 observations.set(i + 1, mI);
314 if (i != 0) {
315 mI = observations.get(i - 1);
316 }
317 --i;
318 }
319 observations.set(i + 1, curr);
320 curr = observations.get(j);
321 }
322 }
323
324 return observations;
325 }
326
327 /**
328 * Estimate a first guess of the amplitude and angular frequency.
329 *
330 * @param observations Observations, sorted w.r.t. abscissa.
331 * @throws MathIllegalArgumentException if the abscissa range is zero.
332 * @throws MathIllegalStateException when the guessing procedure cannot
333 * produce sensible results.
334 * @return the guessed amplitude (at index 0) and circular frequency
335 * (at index 1).
336 */
337 private double[] guessAOmega(WeightedObservedPoint[] observations) {
338 final double[] aOmega = new double[2];
339
340 // initialize the sums for the linear model between the two integrals
341 double sx2 = 0;
342 double sy2 = 0;
343 double sxy = 0;
344 double sxz = 0;
345 double syz = 0;
346
347 double currentX = observations[0].getX();
348 double currentY = observations[0].getY();
349 double f2Integral = 0;
350 double fPrime2Integral = 0;
351 final double startX = currentX;
352 for (int i = 1; i < observations.length; ++i) {
353 // one step forward
354 final double previousX = currentX;
355 final double previousY = currentY;
356 currentX = observations[i].getX();
357 currentY = observations[i].getY();
358
359 // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
360 // considering a linear model for f (and therefore constant f')
361 final double dx = currentX - previousX;
362 final double dy = currentY - previousY;
363 final double f2StepIntegral =
364 dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
365 final double fPrime2StepIntegral = dy * dy / dx;
366
367 final double x = currentX - startX;
368 f2Integral += f2StepIntegral;
369 fPrime2Integral += fPrime2StepIntegral;
370
371 sx2 += x * x;
372 sy2 += f2Integral * f2Integral;
373 sxy += x * f2Integral;
374 sxz += x * fPrime2Integral;
375 syz += f2Integral * fPrime2Integral;
376 }
377
378 // compute the amplitude and pulsation coefficients
379 double c1 = sy2 * sxz - sxy * syz;
380 double c2 = sxy * sxz - sx2 * syz;
381 double c3 = sx2 * sy2 - sxy * sxy;
382 if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
383 final int last = observations.length - 1;
384 // Range of the observations, assuming that the
385 // observations are sorted.
386 final double xRange = observations[last].getX() - observations[0].getX();
387 if (xRange == 0) {
388 throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
389 }
390 aOmega[1] = 2 * Math.PI / xRange;
391
392 double yMin = Double.POSITIVE_INFINITY;
393 double yMax = Double.NEGATIVE_INFINITY;
394 for (int i = 1; i < observations.length; ++i) {
395 final double y = observations[i].getY();
396 if (y < yMin) {
397 yMin = y;
398 }
399 if (y > yMax) {
400 yMax = y;
401 }
402 }
403 aOmega[0] = 0.5 * (yMax - yMin);
404 } else {
405 if (c2 == 0) {
406 // In some ill-conditioned cases (cf. MATH-844), the guesser
407 // procedure cannot produce sensible results.
408 throw new MathIllegalStateException(LocalizedCoreFormats.ZERO_DENOMINATOR);
409 }
410
411 aOmega[0] = FastMath.sqrt(c1 / c2);
412 aOmega[1] = FastMath.sqrt(c2 / c3);
413 }
414
415 return aOmega;
416 }
417
418 /**
419 * Estimate a first guess of the phase.
420 *
421 * @param observations Observations, sorted w.r.t. abscissa.
422 * @return the guessed phase.
423 */
424 private double guessPhi(WeightedObservedPoint[] observations) {
425 // initialize the means
426 double fcMean = 0;
427 double fsMean = 0;
428
429 double currentX = observations[0].getX();
430 double currentY = observations[0].getY();
431 for (int i = 1; i < observations.length; ++i) {
432 // one step forward
433 final double previousX = currentX;
434 final double previousY = currentY;
435 currentX = observations[i].getX();
436 currentY = observations[i].getY();
437 final double currentYPrime = (currentY - previousY) / (currentX - previousX);
438
439 double omegaX = omega * currentX;
440 SinCos sc = FastMath.sinCos(omegaX);
441 fcMean += omega * currentY * sc.cos() - currentYPrime * sc.sin();
442 fsMean += omega * currentY * sc.sin() + currentYPrime * sc.cos();
443 }
444
445 return FastMath.atan2(-fsMean, fcMean);
446 }
447 }
448 }