Class Mean
- java.lang.Object
-
- org.hipparchus.stat.descriptive.AbstractStorelessUnivariateStatistic
-
- org.hipparchus.stat.descriptive.moment.Mean
-
- All Implemented Interfaces:
Serializable,DoubleConsumer,AggregatableStatistic<Mean>,StorelessUnivariateStatistic,UnivariateStatistic,WeightedEvaluation,MathArrays.Function
public class Mean extends AbstractStorelessUnivariateStatistic implements AggregatableStatistic<Mean>, WeightedEvaluation, Serializable
Computes the arithmetic mean of a set of values. Uses the definitional formula:mean = sum(x_i) / n
where
nis the number of observations.When
increment(double)is used to add data incrementally from a stream of (unstored) values, the value of the statistic thatgetResult()returns is computed using the following recursive updating algorithm:- Initialize
m =the first value - For each additional value, update using
m = m + (new value - m) / (number of observations)
If
UnivariateStatistic.evaluate(double[])is used to compute the mean of an array of stored values, a two-pass, corrected algorithm is used, starting with the definitional formula computed using the array of stored values and then correcting this by adding the mean deviation of the data values from the arithmetic mean. See, e.g. "Comparison of Several Algorithms for Computing Sample Means and Variances," Robert F. Ling, Journal of the American Statistical Association, Vol. 69, No. 348 (Dec., 1974), pp. 859-866.Returns
Double.NaNif the dataset is empty. Note that Double.NaN may also be returned if the input includes NaN and / or infinite values.Note that this implementation is not synchronized. If multiple threads access an instance of this class concurrently, and at least one of the threads invokes the
increment()orclear()method, it must be synchronized externally.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected booleanincMomentDetermines whether or not this statistic can be incremented or cleared.protected org.hipparchus.stat.descriptive.moment.FirstMomentmomentFirst moment on which this statistic is based.
-
Constructor Summary
Constructors Constructor Description Mean()Constructs a Mean.Mean(org.hipparchus.stat.descriptive.moment.FirstMoment m1)Constructs a Mean with an External Moment.Mean(Mean original)Copy constructor, creates a newMeanidentical to theoriginal.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidaggregate(Mean other)Aggregates the provided instance into this instance.voidclear()Clears the internal state of the StatisticMeancopy()Returns a copy of the statistic with the same internal state.doubleevaluate(double[] values, double[] weights, int begin, int length)Returns the weighted arithmetic mean of the entries in the specified portion of the input array, orDouble.NaNif the designated subarray is empty.doubleevaluate(double[] values, int begin, int length)Returns the arithmetic mean of the entries in the specified portion of the input array, orDouble.NaNif the designated subarray is empty.longgetN()Returns the number of values that have been added.doublegetResult()Returns the current value of the Statistic.voidincrement(double d)Updates the internal state of the statistic to reflect the addition of the new value.-
Methods inherited from class org.hipparchus.stat.descriptive.AbstractStorelessUnivariateStatistic
equals, hashCode, toString
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.hipparchus.stat.descriptive.AggregatableStatistic
aggregate, aggregate
-
Methods inherited from interface java.util.function.DoubleConsumer
andThen
-
Methods inherited from interface org.hipparchus.stat.descriptive.StorelessUnivariateStatistic
accept, incrementAll, incrementAll
-
Methods inherited from interface org.hipparchus.stat.descriptive.UnivariateStatistic
evaluate
-
Methods inherited from interface org.hipparchus.stat.descriptive.WeightedEvaluation
evaluate
-
-
-
-
Field Detail
-
moment
protected final org.hipparchus.stat.descriptive.moment.FirstMoment moment
First moment on which this statistic is based.
-
incMoment
protected final boolean incMoment
Determines whether or not this statistic can be incremented or cleared.Statistics based on (constructed from) external moments cannot be incremented or cleared.
-
-
Constructor Detail
-
Mean
public Mean()
Constructs a Mean.
-
Mean
public Mean(org.hipparchus.stat.descriptive.moment.FirstMoment m1)
Constructs a Mean with an External Moment.- Parameters:
m1- the moment
-
Mean
public Mean(Mean original) throws NullArgumentException
Copy constructor, creates a newMeanidentical to theoriginal.- Parameters:
original- theMeaninstance to copy- Throws:
NullArgumentException- if original is null
-
-
Method Detail
-
increment
public void increment(double d)
Updates the internal state of the statistic to reflect the addition of the new value.Note that when
Mean(FirstMoment)is used to create a Mean, this method does nothing. In that case, the FirstMoment should be incremented directly.- Specified by:
incrementin interfaceStorelessUnivariateStatistic- Specified by:
incrementin classAbstractStorelessUnivariateStatistic- Parameters:
d- the new value.
-
clear
public void clear()
Clears the internal state of the Statistic- Specified by:
clearin interfaceStorelessUnivariateStatistic- Specified by:
clearin classAbstractStorelessUnivariateStatistic
-
getResult
public double getResult()
Returns the current value of the Statistic.- Specified by:
getResultin interfaceStorelessUnivariateStatistic- Specified by:
getResultin classAbstractStorelessUnivariateStatistic- Returns:
- value of the statistic,
Double.NaNif it has been cleared or just instantiated.
-
getN
public long getN()
Returns the number of values that have been added.- Specified by:
getNin interfaceStorelessUnivariateStatistic- Returns:
- the number of values.
-
aggregate
public void aggregate(Mean other)
Aggregates the provided instance into this instance.This method can be used to combine statistics computed over partitions or subsamples - i.e., the value of this instance after this operation should be the same as if a single statistic would have been applied over the combined dataset.
- Specified by:
aggregatein interfaceAggregatableStatistic<Mean>- Parameters:
other- the instance to aggregate into this instance
-
evaluate
public double evaluate(double[] values, int begin, int length) throws MathIllegalArgumentExceptionReturns the arithmetic mean of the entries in the specified portion of the input array, orDouble.NaNif the designated subarray is empty.- Specified by:
evaluatein interfaceMathArrays.Function- Specified by:
evaluatein interfaceStorelessUnivariateStatistic- Specified by:
evaluatein interfaceUnivariateStatistic- Parameters:
values- the input arraybegin- index of the first array element to includelength- the number of elements to include- Returns:
- the mean of the values or Double.NaN if length = 0
- Throws:
MathIllegalArgumentException- if the array is null or the array index parameters are not valid- See Also:
UnivariateStatistic.evaluate(double[], int, int)
-
evaluate
public double evaluate(double[] values, double[] weights, int begin, int length) throws MathIllegalArgumentExceptionReturns the weighted arithmetic mean of the entries in the specified portion of the input array, orDouble.NaNif the designated subarray is empty.Throws
IllegalArgumentExceptionif either array is null.See
Meanfor details on the computing algorithm. The two-pass algorithm described above is used here, with weights applied in computing both the original estimate and the correction factor.Throws
IllegalArgumentExceptionif any of the following are true:- the values array is null
- the weights array is null
- the weights array does not have the same length as the values array
- the weights array contains one or more infinite values
- the weights array contains one or more NaN values
- the weights array contains negative values
- the start and length arguments do not determine a valid array
- Specified by:
evaluatein interfaceWeightedEvaluation- Parameters:
values- the input arrayweights- the weights arraybegin- index of the first array element to includelength- the number of elements to include- Returns:
- the mean of the values or Double.NaN if length = 0
- Throws:
MathIllegalArgumentException- if the parameters are not valid
-
copy
public Mean copy()
Returns a copy of the statistic with the same internal state.- Specified by:
copyin interfaceStorelessUnivariateStatistic- Specified by:
copyin interfaceUnivariateStatistic- Specified by:
copyin classAbstractStorelessUnivariateStatistic- Returns:
- a copy of the statistic
-
-