1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 package org.hipparchus.analysis.function;
23
24 import org.hipparchus.analysis.UnivariateFunction;
25 import org.hipparchus.analysis.differentiation.DSFactory;
26 import org.hipparchus.analysis.differentiation.DerivativeStructure;
27 import org.hipparchus.dfp.Dfp;
28 import org.hipparchus.dfp.DfpField;
29 import org.hipparchus.dfp.DfpMath;
30 import org.hipparchus.util.FastMath;
31 import org.junit.jupiter.api.Test;
32
33 import static org.junit.jupiter.api.Assertions.assertEquals;
34
35 class SincTest {
36
37 @Test
38 void testShortcut() {
39 final Sinc s = new Sinc();
40 final UnivariateFunction f = new UnivariateFunction() {
41 @Override
42 public double value(double x) {
43 Dfp dfpX = new DfpField(25).newDfp(x);
44 return DfpMath.sin(dfpX).divide(dfpX).toDouble();
45 }
46 };
47
48 for (double x = 1e-30; x < 1e10; x *= 2) {
49 final double fX = f.value(x);
50 final double sX = s.value(x);
51 assertEquals(fX, sX, 2.0e-16, "x=" + x);
52 }
53 }
54
55 @Test
56 void testCrossings() {
57 final Sinc s = new Sinc(true);
58 final int numCrossings = 1000;
59 final double tol = 2e-16;
60 for (int i = 1; i <= numCrossings; i++) {
61 assertEquals(0, s.value(i), tol, "i=" + i);
62 }
63 }
64
65 @Test
66 void testZero() {
67 final Sinc s = new Sinc();
68 assertEquals(1d, s.value(0), 0);
69 }
70
71 @Test
72 void testEuler() {
73 final Sinc s = new Sinc();
74 final double x = 123456.789;
75 double prod = 1;
76 double xOverPow2 = x / 2;
77 while (xOverPow2 > 0) {
78 prod *= FastMath.cos(xOverPow2);
79 xOverPow2 /= 2;
80 }
81 assertEquals(prod, s.value(x), 1e-13);
82 }
83
84 @Test
85 void testDerivativeZero() {
86 final DerivativeStructure s0 = new Sinc(true).value(new DSFactory(1, 1).variable(0, 0.0));
87 assertEquals(0, s0.getPartialDerivative(1), 0);
88 }
89
90 @Test
91 void testDerivatives1Dot2Unnormalized() {
92 DerivativeStructure s = new Sinc(false).value(new DSFactory(1, 5).variable(0, 1.2));
93 assertEquals( 0.77669923830602195806, s.getPartialDerivative(0), 1.0e-16);
94 assertEquals(-0.34528456985779031701, s.getPartialDerivative(1), 1.0e-16);
95 assertEquals(-0.2012249552097047631, s.getPartialDerivative(2), 1.0e-16);
96 assertEquals( 0.2010975926270339262, s.getPartialDerivative(3), 4.0e-16);
97 assertEquals( 0.106373929549242204, s.getPartialDerivative(4), 1.0e-15);
98 assertEquals(-0.1412599110579478695, s.getPartialDerivative(5), 3.0e-15);
99 }
100
101 @Test
102 void testDerivatives1Dot2Normalized() {
103 DerivativeStructure s = new Sinc(true).value(new DSFactory(1, 5).variable(0, 1.2));
104 assertEquals(-0.15591488063143983888, s.getPartialDerivative(0), 6.0e-17);
105 assertEquals(-0.54425176145292298767, s.getPartialDerivative(1), 2.0e-16);
106 assertEquals(2.4459044611635856107, s.getPartialDerivative(2), 9.0e-16);
107 assertEquals(0.5391369206235909586, s.getPartialDerivative(3), 7.0e-16);
108 assertEquals(-16.984649869728849865, s.getPartialDerivative(4), 8.0e-15);
109 assertEquals(5.0980327462666316586, s.getPartialDerivative(5), 9.0e-15);
110 }
111
112 @Test
113 void testDerivativeShortcut() {
114 final Sinc sinc = new Sinc();
115 final UnivariateFunction f = new UnivariateFunction() {
116 @Override
117 public double value(double x) {
118 Dfp dfpX = new DfpField(25).newDfp(x);
119 return DfpMath.cos(dfpX).subtract(DfpMath.sin(dfpX).divide(dfpX)).divide(dfpX).toDouble();
120 }
121 };
122
123 DSFactory factory = new DSFactory(1, 1);
124 for (double x = 1e-30; x < 1e10; x *= 2) {
125 final double fX = f.value(x);
126 final DerivativeStructure sX = sinc.value(factory.variable(0, x));
127 assertEquals(fX, sX.getPartialDerivative(1), 3.0e-13, "x=" + x);
128 }
129 }
130 }