1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 package org.hipparchus.analysis.integration.gauss;
23
24 import org.hipparchus.analysis.UnivariateFunction;
25 import org.hipparchus.util.FastMath;
26 import org.junit.jupiter.api.Test;
27
28 import static org.junit.jupiter.api.Assertions.assertEquals;
29
30
31
32
33
34 class HermiteTest {
35 private static final GaussIntegratorFactory factory = new GaussIntegratorFactory();
36
37 @Test
38 void testNormalDistribution() {
39 final double oneOverSqrtPi = 1 / FastMath.sqrt(Math.PI);
40
41
42
43 final int numPoints = 1;
44
45
46
47
48
49
50
51 final UnivariateFunction f = new UnivariateFunction() {
52 public double value(double y) {
53 return oneOverSqrtPi;
54 }
55 };
56
57 final GaussIntegrator integrator = factory.hermite(numPoints);
58 final double result = integrator.integrate(f);
59 final double expected = 1;
60 assertEquals(expected, result, FastMath.ulp(expected));
61 }
62
63 @Test
64 void testNormalMean() {
65 final double sqrtTwo = FastMath.sqrt(2);
66 final double oneOverSqrtPi = 1 / FastMath.sqrt(Math.PI);
67
68 final double mu = 12345.6789;
69 final double sigma = 987.654321;
70 final int numPoints = 6;
71
72
73
74
75
76
77
78 final UnivariateFunction f = new UnivariateFunction() {
79 public double value(double y) {
80 return oneOverSqrtPi * (sqrtTwo * sigma * y + mu);
81 }
82 };
83
84 final GaussIntegrator integrator = factory.hermite(numPoints);
85 final double result = integrator.integrate(f);
86 final double expected = mu;
87 assertEquals(expected, result, 5 * FastMath.ulp(expected));
88 }
89
90 @Test
91 void testNormalVariance() {
92 final double twoOverSqrtPi = 2 / FastMath.sqrt(Math.PI);
93
94 final double sigma = 987.654321;
95 final double sigma2 = sigma * sigma;
96 final int numPoints = 5;
97
98
99
100
101
102
103
104 final UnivariateFunction f = new UnivariateFunction() {
105 public double value(double y) {
106 return twoOverSqrtPi * sigma2 * y * y;
107 }
108 };
109
110 final GaussIntegrator integrator = factory.hermite(numPoints);
111 final double result = integrator.integrate(f);
112 final double expected = sigma2;
113 assertEquals(expected, result, 10 * FastMath.ulp(expected));
114 }
115 }