View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.analysis.solvers;
23  
24  import org.hipparchus.analysis.QuinticFunction;
25  import org.hipparchus.analysis.UnivariateFunction;
26  import org.hipparchus.analysis.function.Sin;
27  import org.hipparchus.exception.MathIllegalArgumentException;
28  import org.hipparchus.util.FastMath;
29  import org.junit.jupiter.api.Test;
30  
31  import static org.junit.jupiter.api.Assertions.assertEquals;
32  import static org.junit.jupiter.api.Assertions.assertThrows;
33  import static org.junit.jupiter.api.Assertions.assertTrue;
34  
35  /**
36   */
37  final class BisectionSolverTest {
38      @Test
39      void testSinZero() {
40          UnivariateFunction f = new Sin();
41          double result;
42  
43          BisectionSolver solver = new BisectionSolver();
44          result = solver.solve(100, f, 3, 4);
45          assertEquals(FastMath.PI, result, solver.getAbsoluteAccuracy());
46  
47          result = solver.solve(100, f, 1, 4);
48          assertEquals(FastMath.PI, result, solver.getAbsoluteAccuracy());
49      }
50  
51      @Test
52      void testQuinticZero() {
53          UnivariateFunction f = new QuinticFunction();
54          double result;
55  
56          BisectionSolver solver = new BisectionSolver();
57          result = solver.solve(100, f, -0.2, 0.2);
58          assertEquals(0, result, solver.getAbsoluteAccuracy());
59  
60          result = solver.solve(100, f, -0.1, 0.3);
61          assertEquals(0, result, solver.getAbsoluteAccuracy());
62  
63          result = solver.solve(100, f, -0.3, 0.45);
64          assertEquals(0, result, solver.getAbsoluteAccuracy());
65  
66          result = solver.solve(100, f, 0.3, 0.7);
67          assertEquals(0.5, result, solver.getAbsoluteAccuracy());
68  
69          result = solver.solve(100, f, 0.2, 0.6);
70          assertEquals(0.5, result, solver.getAbsoluteAccuracy());
71  
72          result = solver.solve(100, f, 0.05, 0.95);
73          assertEquals(0.5, result, solver.getAbsoluteAccuracy());
74  
75          result = solver.solve(100, f, 0.85, 1.25);
76          assertEquals(1.0, result, solver.getAbsoluteAccuracy());
77  
78          result = solver.solve(100, f, 0.8, 1.2);
79          assertEquals(1.0, result, solver.getAbsoluteAccuracy());
80  
81          result = solver.solve(100, f, 0.85, 1.75);
82          assertEquals(1.0, result, solver.getAbsoluteAccuracy());
83  
84          result = solver.solve(100, f, 0.55, 1.45);
85          assertEquals(1.0, result, solver.getAbsoluteAccuracy());
86  
87          result = solver.solve(100, f, 0.85, 5);
88          assertEquals(1.0, result, solver.getAbsoluteAccuracy());
89  
90          assertTrue(solver.getEvaluations() > 0);
91      }
92  
93      @Test
94      void testMath369() {
95          UnivariateFunction f = new Sin();
96          BisectionSolver solver = new BisectionSolver();
97          assertEquals(FastMath.PI, solver.solve(100, f, 3.0, 3.2, 3.1), solver.getAbsoluteAccuracy());
98      }
99  
100     @Test
101     void testHipparchusGithub40() {
102         assertThrows(MathIllegalArgumentException.class, () -> {
103             new BisectionSolver().solve(100, x -> Math.cos(x) + 2, 0.0, 5.0);
104         });
105     }
106 
107 }
108