View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.distribution.continuous;
24  
25  import org.junit.jupiter.api.BeforeEach;
26  import org.junit.jupiter.api.Test;
27  
28  import static org.junit.jupiter.api.Assertions.assertEquals;
29  
30  /**
31   * Test cases for {@link ChiSquaredDistribution}.
32   *
33   * @see RealDistributionAbstractTest
34   */
35  public class ChiSquaredDistributionTest extends RealDistributionAbstractTest {
36  
37      //-------------- Implementations for abstract methods -----------------------
38  
39      /** Creates the default continuous distribution instance to use in tests. */
40      @Override
41      public ChiSquaredDistribution makeDistribution() {
42          return new ChiSquaredDistribution(5.0);
43      }
44  
45      /** Creates the default cumulative probability distribution test input values */
46      @Override
47      public double[] makeCumulativeTestPoints() {
48          // quantiles computed using R version 2.9.2
49          return new double[] {
50              0.210212602629, 0.554298076728, 0.831211613487, 1.14547622606, 1.61030798696,
51              20.5150056524, 15.0862724694, 12.8325019940, 11.0704976935, 9.23635689978
52          };
53      }
54  
55      /** Creates the default cumulative probability density test expected values */
56      @Override
57      public double[] makeCumulativeTestValues() {
58          return new double[] { 0.001, 0.01, 0.025, 0.05, 0.1, 0.999, 0.990, 0.975, 0.950, 0.900 };
59      }
60  
61      /** Creates the default inverse cumulative probability test input values */
62      @Override
63      public double[] makeInverseCumulativeTestPoints() {
64          return new double[] { 0, 0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d, 0.990d, 0.975d, 0.950d, 0.900d, 1 };
65      }
66  
67      /** Creates the default inverse cumulative probability density test expected values */
68      @Override
69      public double[] makeInverseCumulativeTestValues() {
70          return new double[] {
71              0, 0.210212602629, 0.554298076728, 0.831211613487, 1.14547622606, 1.61030798696, 20.5150056524,
72              15.0862724694, 12.8325019940, 11.0704976935, 9.23635689978, Double.POSITIVE_INFINITY
73          };
74      }
75  
76      /** Creates the default probability density test expected values */
77      @Override
78      public double[] makeDensityTestValues() {
79          return new double[] {
80              0.0115379817652, 0.0415948507811, 0.0665060119842, 0.0919455953114, 0.121472591024,
81              0.000433630076361, 0.00412780610309, 0.00999340341045, 0.0193246438937, 0.0368460089216
82          };
83      }
84  
85      // --------------------- Override tolerance  --------------
86      @BeforeEach
87      @Override
88      public void setUp() {
89          super.setUp();
90          setTolerance(1e-9);
91      }
92  
93      //---------------------------- Additional test cases -------------------------
94  
95      @Test
96      void testSmallDf() {
97          setDistribution(new ChiSquaredDistribution(0.1d));
98          setTolerance(1E-4);
99          // quantiles computed using R version 1.8.1 (linux version)
100         setCumulativeTestPoints(new double[] {
101             1.168926E-60, 1.168926E-40, 1.063132E-32, 1.144775E-26, 1.168926E-20,
102             5.472917, 2.175255, 1.13438, 0.5318646, 0.1526342
103         });
104         setInverseCumulativeTestValues(getCumulativeTestPoints());
105         setInverseCumulativeTestPoints(getCumulativeTestValues());
106         verifyCumulativeProbabilities();
107         verifyInverseCumulativeProbabilities();
108     }
109 
110     @Test
111     void testDfAccessors() {
112         ChiSquaredDistribution distribution = (ChiSquaredDistribution) getDistribution();
113         assertEquals(5d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
114     }
115 
116     @Test
117     void testDensity() {
118         double[] x = new double[]{-0.1, 1e-6, 0.5, 1, 2, 5};
119         //R 2.5: print(dchisq(x, df=1), digits=10)
120         checkDensity(1, x, new double[] {
121             0.00000000000, 398.94208093034, 0.43939128947, 0.24197072452, 0.10377687436, 0.01464498256
122         });
123         //R 2.5: print(dchisq(x, df=0.1), digits=10)
124         checkDensity(0.1, x, new double[] {
125             0.000000000e+00, 2.486453997e+04, 7.464238732e-02, 3.009077718e-02, 9.447299159e-03, 8.827199396e-04
126         });
127         //R 2.5: print(dchisq(x, df=2), digits=10)
128         checkDensity(2, x, new double[] {
129             0.00000000000, 0.49999975000, 0.38940039154, 0.30326532986, 0.18393972059, 0.04104249931
130         });
131         //R 2.5: print(dchisq(x, df=10), digits=10)
132         checkDensity(10, x, new double[] {
133             0.000000000e+00, 1.302082682e-27, 6.337896998e-05, 7.897534632e-04, 7.664155024e-03, 6.680094289e-02
134         });
135     }
136 
137     private void checkDensity(double df, double[] x, double[] expected) {
138         ChiSquaredDistribution d = new ChiSquaredDistribution(df);
139         for (int i = 0; i < x.length; i++) {
140             assertEquals(expected[i], d.density(x[i]), 1e-5);
141         }
142     }
143 
144     @Test
145     void testMoments() {
146         final double tol = 1e-9;
147         ChiSquaredDistribution dist;
148 
149         dist = new ChiSquaredDistribution(1500);
150         assertEquals(1500, dist.getNumericalMean(), tol);
151         assertEquals(3000, dist.getNumericalVariance(), tol);
152 
153         dist = new ChiSquaredDistribution(1.12);
154         assertEquals(1.12, dist.getNumericalMean(), tol);
155         assertEquals(2.24, dist.getNumericalVariance(), tol);
156     }
157 }