View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.nonlinear.vector.leastsquares;
23  
24  import org.hipparchus.analysis.MultivariateMatrixFunction;
25  import org.hipparchus.analysis.MultivariateVectorFunction;
26  import org.hipparchus.exception.MathIllegalArgumentException;
27  import org.hipparchus.exception.MathIllegalStateException;
28  import org.hipparchus.geometry.euclidean.twod.Vector2D;
29  import org.hipparchus.linear.Array2DRowRealMatrix;
30  import org.hipparchus.linear.ArrayRealVector;
31  import org.hipparchus.linear.BlockRealMatrix;
32  import org.hipparchus.linear.DiagonalMatrix;
33  import org.hipparchus.linear.RealMatrix;
34  import org.hipparchus.linear.RealVector;
35  import org.hipparchus.optim.ConvergenceChecker;
36  import org.hipparchus.optim.SimpleVectorValueChecker;
37  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
38  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
39  import org.hipparchus.util.FastMath;
40  import org.hipparchus.util.Pair;
41  import org.junit.jupiter.api.Assertions;
42  import org.junit.jupiter.api.Test;
43  
44  import java.io.IOException;
45  import java.util.Arrays;
46  
47  import static org.hamcrest.CoreMatchers.is;
48  import static org.hamcrest.CoreMatchers.not;
49  import static org.hamcrest.CoreMatchers.sameInstance;
50  import static org.hamcrest.MatcherAssert.assertThat;
51  import static org.junit.jupiter.api.Assertions.assertArrayEquals;
52  import static org.junit.jupiter.api.Assertions.assertEquals;
53  import static org.junit.jupiter.api.Assertions.assertTrue;
54  
55  /**
56   * Some of the unit tests are re-implementations of the MINPACK <a
57   * href="http://www.netlib.org/minpack/ex/file17">file17</a> and <a
58   * href="http://www.netlib.org/minpack/ex/file22">file22</a> test files. The
59   * redistribution policy for MINPACK is available <a href="http://www.netlib.org/minpack/disclaimer">here</a>.
60   * <p/>
61   * <T> Concrete implementation of an optimizer.
62   *
63   */
64  public abstract class AbstractLeastSquaresOptimizerAbstractTest {
65  
66      /** default absolute tolerance of comparisons */
67      public static final double TOl = 1e-10;
68  
69      public LeastSquaresBuilder base() {
70          return new LeastSquaresBuilder()
71                  .checkerPair(new SimpleVectorValueChecker(1e-6, 1e-6))
72                  .maxEvaluations(100)
73                  .maxIterations(getMaxIterations());
74      }
75  
76      public LeastSquaresBuilder builder(CircleVectorial c) {
77          final double[] weights = new double[c.getN()];
78          Arrays.fill(weights, 1.0);
79          return base()
80                  .model(c.getModelFunction(), c.getModelFunctionJacobian())
81                  .target(new double[c.getN()])
82                  .weight(new DiagonalMatrix(weights));
83      }
84  
85      public LeastSquaresBuilder builder(StatisticalReferenceDataset dataset) {
86          StatisticalReferenceDataset.LeastSquaresProblem problem
87                  = dataset.getLeastSquaresProblem();
88          final double[] weights = new double[dataset.getNumObservations()];
89          Arrays.fill(weights, 1.0);
90          return base()
91                  .model(problem.getModelFunction(), problem.getModelFunctionJacobian())
92                  .target(dataset.getData()[1])
93                  .weight(new DiagonalMatrix(weights))
94                  .start(dataset.getStartingPoint(0));
95      }
96  
97      public void customFail(LeastSquaresOptimizer optimizer) {
98          Assertions.fail("Expected Exception from: " + optimizer.toString());
99      }
100 
101     /**
102      * Check the value of a vector.
103      * @param tolerance the absolute tolerance of comparisons
104      * @param actual the vector to test
105      * @param expected the expected values
106      */
107     public void customAssertEquals(double tolerance, RealVector actual, double... expected){
108         for (int i = 0; i < expected.length; i++) {
109             assertEquals(expected[i], actual.getEntry(i), tolerance);
110         }
111         assertEquals(expected.length, actual.getDimension());
112     }
113 
114     /**
115      * @return the default number of allowed iterations (which will be used when not
116      *         specified otherwise).
117      */
118     public abstract int getMaxIterations();
119 
120     /**
121      * Get an instance of the optimizer under test.
122      *
123      * @return the subject under test.
124      */
125     public abstract LeastSquaresOptimizer getOptimizer();
126 
127     /**
128      * The subject under test.
129      */
130     public final LeastSquaresOptimizer optimizer = this.getOptimizer();
131 
132     @Test
133     public void testGetIterations() {
134         LeastSquaresProblem lsp = base()
135                 .target(new double[]{1})
136                 .weight(new DiagonalMatrix(new double[]{1}))
137                 .start(new double[]{3})
138                 .model(new MultivariateJacobianFunction() {
139                     public Pair<RealVector, RealMatrix> value(final RealVector point) {
140                         return new Pair<RealVector, RealMatrix>(
141                                 new ArrayRealVector(
142                                         new double[]{
143                                                 FastMath.pow(point.getEntry(0), 4)
144                                         },
145                                         false),
146                                 new Array2DRowRealMatrix(
147                                         new double[][]{
148                                                 {0.25 * FastMath.pow(point.getEntry(0), 3)}
149                                         },
150                                         false)
151                         );
152                     }
153                 })
154                 .build();
155 
156         Optimum optimum = optimizer.optimize(lsp);
157 
158         //TODO more specific test? could pass with 'return 1;'
159         assertTrue(optimum.getIterations() > 0);
160     }
161 
162     @Test
163     public void testTrivial() {
164         LinearProblem problem
165                 = new LinearProblem(new double[][]{{2}},
166                 new double[]{3});
167         LeastSquaresProblem ls = problem.getBuilder().build();
168 
169         Optimum optimum = optimizer.optimize(ls);
170 
171         assertEquals(0, optimum.getRMS(), TOl);
172         customAssertEquals(TOl, optimum.getPoint(), 1.5);
173         assertEquals(0.0, optimum.getResiduals().getEntry(0), TOl);
174     }
175 
176     @Test
177     public void testQRColumnsPermutation() {
178         LinearProblem problem
179                 = new LinearProblem(new double[][]{{1, -1}, {0, 2}, {1, -2}},
180                 new double[]{4, 6, 1});
181 
182         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
183 
184         assertEquals(0, optimum.getRMS(), TOl);
185         customAssertEquals(TOl, optimum.getPoint(), 7, 3);
186         customAssertEquals(TOl, optimum.getResiduals(), 0, 0, 0);
187     }
188 
189     @Test
190     public void testNoDependency() {
191         LinearProblem problem = new LinearProblem(new double[][]{
192                 {2, 0, 0, 0, 0, 0},
193                 {0, 2, 0, 0, 0, 0},
194                 {0, 0, 2, 0, 0, 0},
195                 {0, 0, 0, 2, 0, 0},
196                 {0, 0, 0, 0, 2, 0},
197                 {0, 0, 0, 0, 0, 2}
198         }, new double[]{0, 1.1, 2.2, 3.3, 4.4, 5.5});
199 
200         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
201 
202         assertEquals(0, optimum.getRMS(), TOl);
203         for (int i = 0; i < problem.target.length; ++i) {
204             assertEquals(0.55 * i, optimum.getPoint().getEntry(i), TOl);
205         }
206     }
207 
208     @Test
209     public void testOneSet() {
210         LinearProblem problem = new LinearProblem(new double[][]{
211                 {1, 0, 0},
212                 {-1, 1, 0},
213                 {0, -1, 1}
214         }, new double[]{1, 1, 1});
215 
216         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
217 
218         assertEquals(0, optimum.getRMS(), TOl);
219         customAssertEquals(TOl, optimum.getPoint(), 1, 2, 3);
220     }
221 
222     @Test
223     public void testTwoSets() {
224         double epsilon = 1e-7;
225         LinearProblem problem = new LinearProblem(new double[][]{
226                 {2, 1, 0, 4, 0, 0},
227                 {-4, -2, 3, -7, 0, 0},
228                 {4, 1, -2, 8, 0, 0},
229                 {0, -3, -12, -1, 0, 0},
230                 {0, 0, 0, 0, epsilon, 1},
231                 {0, 0, 0, 0, 1, 1}
232         }, new double[]{2, -9, 2, 2, 1 + epsilon * epsilon, 2});
233 
234         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
235 
236         assertEquals(0, optimum.getRMS(), TOl);
237         customAssertEquals(TOl, optimum.getPoint(), 3, 4, -1, -2, 1 + epsilon, 1 - epsilon);
238     }
239 
240     @Test
241     public void testNonInvertible() throws Exception {
242         try {
243             LinearProblem problem = new LinearProblem(new double[][]{
244                 {1, 2, -3},
245                 {2, 1, 3},
246                 {-3, 0, -9}
247             }, new double[]{1, 1, 1});
248 
249             optimizer.optimize(problem.getBuilder().build());
250 
251             customFail(optimizer);
252         } catch (MathIllegalArgumentException miae) {
253             // expected
254         } catch (MathIllegalStateException mise) {
255             // expected
256         }
257     }
258 
259     @Test
260     public void testIllConditioned() {
261         LinearProblem problem1 = new LinearProblem(new double[][]{
262                 {10, 7, 8, 7},
263                 {7, 5, 6, 5},
264                 {8, 6, 10, 9},
265                 {7, 5, 9, 10}
266         }, new double[]{32, 23, 33, 31});
267         final double[] start = {0, 1, 2, 3};
268 
269         Optimum optimum = optimizer
270                 .optimize(problem1.getBuilder().start(start).build());
271 
272         assertEquals(0, optimum.getRMS(), TOl);
273         customAssertEquals(TOl, optimum.getPoint(), 1, 1, 1, 1);
274 
275         LinearProblem problem2 = new LinearProblem(new double[][]{
276                 {10.00, 7.00, 8.10, 7.20},
277                 {7.08, 5.04, 6.00, 5.00},
278                 {8.00, 5.98, 9.89, 9.00},
279                 {6.99, 4.99, 9.00, 9.98}
280         }, new double[]{32, 23, 33, 31});
281 
282         optimum = optimizer.optimize(problem2.getBuilder().start(start).build());
283 
284         assertEquals(0, optimum.getRMS(), TOl);
285         customAssertEquals(1e-8, optimum.getPoint(), -81, 137, -34, 22);
286     }
287 
288     @Test
289     public void testMoreEstimatedParametersSimple() {
290         LinearProblem problem = new LinearProblem(new double[][]{
291                 {3, 2, 0, 0},
292                 {0, 1, -1, 1},
293                 {2, 0, 1, 0}
294         }, new double[]{7, 3, 5});
295 
296         Optimum optimum = optimizer
297                 .optimize(problem.getBuilder().start(new double[]{7, 6, 5, 4}).build());
298 
299         assertEquals(0, optimum.getRMS(), TOl);
300     }
301 
302     @Test
303     public void testMoreEstimatedParametersUnsorted() {
304         LinearProblem problem = new LinearProblem(new double[][]{
305                 {1, 1, 0, 0, 0, 0},
306                 {0, 0, 1, 1, 1, 0},
307                 {0, 0, 0, 0, 1, -1},
308                 {0, 0, -1, 1, 0, 1},
309                 {0, 0, 0, -1, 1, 0}
310         }, new double[]{3, 12, -1, 7, 1});
311 
312         Optimum optimum = optimizer.optimize(
313                 problem.getBuilder().start(new double[]{2, 2, 2, 2, 2, 2}).build());
314 
315         assertEquals(0, optimum.getRMS(), TOl);
316         RealVector point = optimum.getPoint();
317         //the first two elements are under constrained
318         //check first two elements obey the constraint: sum to 3
319         assertEquals(3, point.getEntry(0) + point.getEntry(1), TOl);
320         //#constrains = #states fro the last 4 elements
321         customAssertEquals(TOl, point.getSubVector(2, 4), 3, 4, 5, 6);
322     }
323 
324     @Test
325     public void testRedundantEquations() {
326         LinearProblem problem = new LinearProblem(new double[][]{
327                 {1, 1},
328                 {1, -1},
329                 {1, 3}
330         }, new double[]{3, 1, 5});
331 
332         Optimum optimum = optimizer
333                 .optimize(problem.getBuilder().start(new double[]{1, 1}).build());
334 
335         assertEquals(0, optimum.getRMS(), TOl);
336         customAssertEquals(TOl, optimum.getPoint(), 2, 1);
337     }
338 
339     @Test
340     public void testInconsistentEquations() {
341         LinearProblem problem = new LinearProblem(new double[][]{
342                 {1, 1},
343                 {1, -1},
344                 {1, 3}
345         }, new double[]{3, 1, 4});
346 
347         Optimum optimum = optimizer
348                 .optimize(problem.getBuilder().start(new double[]{1, 1}).build());
349 
350         //TODO what is this actually testing?
351         assertTrue(optimum.getRMS() > 0.1);
352     }
353 
354     @Test
355     public void testInconsistentSizes1() {
356         try {
357             LinearProblem problem
358                     = new LinearProblem(new double[][]{{1, 0},
359                     {0, 1}},
360                     new double[]{-1, 1});
361 
362             //TODO why is this part here? hasn't it been tested already?
363             Optimum optimum = optimizer.optimize(problem.getBuilder().build());
364 
365             assertEquals(0, optimum.getRMS(), TOl);
366             customAssertEquals(TOl, optimum.getPoint(), -1, 1);
367 
368             //TODO move to builder test
369             optimizer.optimize(
370                     problem.getBuilder().weight(new DiagonalMatrix(new double[]{1})).build());
371 
372             customFail(optimizer);
373         } catch (MathIllegalArgumentException e) {
374             //expected
375         }
376     }
377 
378     @Test
379     public void testInconsistentSizes2() {
380         try {
381             LinearProblem problem
382                     = new LinearProblem(new double[][]{{1, 0}, {0, 1}},
383                     new double[]{-1, 1});
384 
385             Optimum optimum = optimizer.optimize(problem.getBuilder().build());
386 
387             assertEquals(0, optimum.getRMS(), TOl);
388             customAssertEquals(TOl, optimum.getPoint(), -1, 1);
389 
390             //TODO move to builder test
391             optimizer.optimize(
392                     problem.getBuilder()
393                             .target(new double[]{1})
394                             .weight(new DiagonalMatrix(new double[]{1}))
395                             .build()
396             );
397 
398             customFail(optimizer);
399         } catch (MathIllegalArgumentException e) {
400             //expected
401         }
402     }
403 
404     @Test
405     public void testCircleFitting() {
406         CircleVectorial circle = new CircleVectorial();
407         circle.addPoint(30, 68);
408         circle.addPoint(50, -6);
409         circle.addPoint(110, -20);
410         circle.addPoint(35, 15);
411         circle.addPoint(45, 97);
412         final double[] start = {98.680, 47.345};
413 
414         Optimum optimum = optimizer.optimize(builder(circle).start(start).build());
415 
416         assertTrue(optimum.getEvaluations() < 10);
417 
418         double rms = optimum.getRMS();
419         assertEquals(1.768262623567235, FastMath.sqrt(circle.getN()) * rms, TOl);
420 
421         Vector2D center = new Vector2D(optimum.getPoint().getEntry(0), optimum.getPoint().getEntry(1));
422         assertEquals(69.96016176931406, circle.getRadius(center), 1e-6);
423         assertEquals(96.07590211815305, center.getX(), 1e-6);
424         assertEquals(48.13516790438953, center.getY(), 1e-6);
425 
426         double[][] cov = optimum.getCovariances(1e-14).getData();
427         assertEquals(1.839, cov[0][0], 0.001);
428         assertEquals(0.731, cov[0][1], 0.001);
429         assertEquals(cov[0][1], cov[1][0], 1e-14);
430         assertEquals(0.786, cov[1][1], 0.001);
431 
432         // add perfect measurements and check formal errors are reduced
433         double r = circle.getRadius(center);
434         for (double d = 0; d < 2 * FastMath.PI; d += 0.01) {
435             circle.addPoint(center.getX() + r * FastMath.cos(d), center.getY() + r * FastMath.sin(d));
436         }
437 
438         double[] weights = new double[circle.getN()];
439         Arrays.fill(weights, 2);
440 
441         optimum = optimizer.optimize(
442                 builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
443 
444         cov = optimum.getCovariances(1e-14).getData();
445         assertEquals(0.0016, cov[0][0], 0.001);
446         assertEquals(3.2e-7, cov[0][1], 1e-9);
447         assertEquals(cov[0][1], cov[1][0], 1e-14);
448         assertEquals(0.0016, cov[1][1], 0.001);
449     }
450 
451     @Test
452     public void testCircleFittingBadInit() {
453         CircleVectorial circle = new CircleVectorial();
454         double[][] points = circlePoints;
455         double[] weights = new double[points.length];
456         final double[] start = {-12, -12};
457         Arrays.fill(weights, 2);
458         for (int i = 0; i < points.length; ++i) {
459             circle.addPoint(points[i][0], points[i][1]);
460         }
461 
462         Optimum optimum = optimizer.optimize(builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
463 
464         Vector2D center = new Vector2D(optimum.getPoint().getEntry(0), optimum.getPoint().getEntry(1));
465         assertTrue(optimum.getEvaluations() < 25);
466         assertEquals(0.043, optimum.getRMS(), 1e-3);
467         assertEquals(0.292235, circle.getRadius(center), 1e-6);
468         assertEquals(-0.151738, center.getX(), 1e-6);
469         assertEquals(0.2075001, center.getY(), 1e-6);
470     }
471 
472     @Test
473     public void testCircleFittingGoodInit() {
474         CircleVectorial circle = new CircleVectorial();
475         double[][] points = circlePoints;
476         double[] weights = new double[points.length];
477         Arrays.fill(weights, 2);
478         for (int i = 0; i < points.length; ++i) {
479             circle.addPoint(points[i][0], points[i][1]);
480         }
481         final double[] start = {0, 0};
482 
483         Optimum optimum = optimizer.optimize(
484                 builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
485 
486         customAssertEquals(1e-6, optimum.getPoint(), -0.1517383071957963, 0.2074999736353867);
487         assertEquals(0.04268731682389561, optimum.getRMS(), 1e-8);
488     }
489 
490     private final double[][] circlePoints = new double[][]{
491             {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724},
492             {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619},
493             {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832},
494             {-0.075133, 0.483271}, {-0.007759, 0.452680}, {0.060071, 0.410235},
495             {0.103037, 0.341076}, {0.118438, 0.273884}, {0.131293, 0.192201},
496             {0.115869, 0.129797}, {0.072223, 0.058396}, {0.022884, 0.000718},
497             {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862},
498             {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526},
499             {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398},
500             {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513},
501             {-0.135352, 0.478186}, {-0.061221, 0.483371}, {0.003711, 0.422737},
502             {0.065054, 0.375830}, {0.108108, 0.297099}, {0.123882, 0.222850},
503             {0.117729, 0.134382}, {0.085195, 0.056820}, {0.029800, -0.019138},
504             {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578},
505             {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926},
506             {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068},
507             {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119},
508             {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560},
509             {0.001375, 0.434937}, {0.082787, 0.385806}, {0.115490, 0.323807},
510             {0.141089, 0.223450}, {0.138693, 0.131703}, {0.126415, 0.049174},
511             {0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635},
512             {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251},
513             {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597},
514             {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428},
515             {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380},
516             {-0.071754, 0.516264}, {0.015942, 0.472802}, {0.076608, 0.419077},
517             {0.127673, 0.330264}, {0.159951, 0.262150}, {0.153530, 0.172681},
518             {0.140653, 0.089229}, {0.078666, 0.024981}, {0.023807, -0.037022},
519             {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526}
520     };
521 
522     public void doTestStRD(final StatisticalReferenceDataset dataset,
523                            final LeastSquaresOptimizer optimizer,
524                            final double errParams,
525                            final double errParamsSd) {
526 
527         final Optimum optimum = optimizer.optimize(builder(dataset).build());
528 
529         final RealVector actual = optimum.getPoint();
530         for (int i = 0; i < actual.getDimension(); i++) {
531             double expected = dataset.getParameter(i);
532             double delta = FastMath.abs(errParams * expected);
533             assertEquals(expected, actual.getEntry(i), delta, dataset.getName() + ", param #" + i);
534         }
535     }
536 
537     @Test
538     public void testKirby2() throws IOException {
539         doTestStRD(StatisticalReferenceDatasetFactory.createKirby2(), optimizer, 1E-7, 1E-7);
540     }
541 
542     @Test
543     public void testHahn1() throws IOException {
544         doTestStRD(StatisticalReferenceDatasetFactory.createHahn1(), optimizer, 1E-7, 1E-4);
545     }
546 
547     @Test
548     public void testPointCopy() {
549         LinearProblem problem = new LinearProblem(new double[][]{
550                 {1, 0, 0},
551                 {-1, 1, 0},
552                 {0, -1, 1}
553         }, new double[]{1, 1, 1});
554         //mutable boolean
555         final boolean[] checked = {false};
556 
557         final LeastSquaresBuilder builder = problem.getBuilder()
558                 .checker(new ConvergenceChecker<Evaluation>() {
559                     public boolean converged(int iteration, Evaluation previous, Evaluation current) {
560                         assertThat(
561                                 previous.getPoint(),
562                                 not(sameInstance(current.getPoint())));
563                         assertArrayEquals(new double[3], previous.getPoint().toArray(), 0);
564                         assertArrayEquals(new double[] {1, 2, 3}, current.getPoint().toArray(), TOl);
565                         checked[0] = true;
566                         return true;
567                     }
568                 });
569         optimizer.optimize(builder.build());
570 
571         assertThat(checked[0], is(true));
572     }
573 
574     class LinearProblem {
575         private final RealMatrix factors;
576         private final double[] target;
577 
578         public LinearProblem(double[][] factors, double[] target) {
579             this.factors = new BlockRealMatrix(factors);
580             this.target = target;
581         }
582 
583         public double[] getTarget() {
584             return target;
585         }
586 
587         public MultivariateVectorFunction getModelFunction() {
588             return new MultivariateVectorFunction() {
589                 public double[] value(double[] params) {
590                     return factors.operate(params);
591                 }
592             };
593         }
594 
595         public MultivariateMatrixFunction getModelFunctionJacobian() {
596             return new MultivariateMatrixFunction() {
597                 public double[][] value(double[] params) {
598                     return factors.getData();
599                 }
600             };
601         }
602 
603         public LeastSquaresBuilder getBuilder() {
604             final double[] weights = new double[target.length];
605             Arrays.fill(weights, 1.0);
606             return base()
607                     .model(getModelFunction(), getModelFunctionJacobian())
608                     .target(target)
609                     .weight(new DiagonalMatrix(weights))
610                     .start(new double[factors.getColumnDimension()]);
611         }
612     }
613 }