1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.hipparchus.analysis.interpolation;
18
19 import org.hipparchus.CalculusFieldElement;
20 import org.hipparchus.Field;
21 import org.hipparchus.analysis.CalculusFieldBivariateFunction;
22 import org.hipparchus.exception.MathIllegalArgumentException;
23 import org.hipparchus.util.MathArrays;
24
25
26
27
28
29
30
31
32
33 public class FieldBilinearInterpolatingFunction<T extends CalculusFieldElement<T>>
34 implements CalculusFieldBivariateFunction<T> {
35
36
37 private final FieldGridAxis<T> xGrid;
38
39
40 private final FieldGridAxis<T> yGrid;
41
42
43 private final int ySize;
44
45
46 private final T[] fVal;
47
48
49
50
51
52
53
54
55
56
57
58 public FieldBilinearInterpolatingFunction(final T[] xVal, final T[] yVal, final T[][] fVal)
59 throws MathIllegalArgumentException {
60 final Field<T> field = fVal[0][0].getField();
61 this.xGrid = new FieldGridAxis<>(xVal, 2);
62 this.yGrid = new FieldGridAxis<>(yVal, 2);
63 this.ySize = yVal.length;
64 this.fVal = MathArrays.buildArray(field, xVal.length * ySize);
65 int k = 0;
66 for (int i = 0; i < xVal.length; ++i) {
67 final T[] fi = fVal[i];
68 for (int j = 0; j < ySize; ++j) {
69 this.fVal[k++] = fi[j];
70 }
71 }
72 }
73
74
75
76
77 public T getXInf() {
78 return xGrid.node(0);
79 }
80
81
82
83
84 public T getXSup() {
85 return xGrid.node(xGrid.size() - 1);
86 }
87
88
89
90
91 public T getYInf() {
92 return yGrid.node(0);
93 }
94
95
96
97
98 public T getYSup() {
99 return yGrid.node(yGrid.size() - 1);
100 }
101
102
103 @Override
104 public T value(T x, T y) {
105
106
107 final int i = xGrid.interpolationIndex(x);
108 final int j = yGrid.interpolationIndex(y);
109 final T x0 = xGrid.node(i);
110 final T x1 = xGrid.node(i + 1);
111 final T y0 = yGrid.node(j);
112 final T y1 = yGrid.node(j + 1);
113
114
115 final int k0 = i * ySize + j;
116 final int k1 = k0 + ySize;
117 final T z00 = fVal[k0];
118 final T z01 = fVal[k0 + 1];
119 final T z10 = fVal[k1];
120 final T z11 = fVal[k1 + 1];
121
122
123 final T dx0 = x.subtract(x0);
124 final T mdx1 = x.subtract(x1);
125 final T dx10 = x1.subtract(x0);
126 final T dy0 = y.subtract(y0);
127 final T mdy1 = y.subtract(y1);
128 final T dy10 = y1.subtract(y0);
129
130 return dy0.multiply(z11).subtract(mdy1.multiply(z10)).multiply(dx0).
131 subtract(dy0.multiply(z01).subtract(mdy1.multiply(z00)).multiply(mdx1)).
132 divide(dx10.multiply(dy10));
133
134 }
135
136 }