View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.analysis.polynomials;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.Field;
21  import org.hipparchus.analysis.CalculusFieldUnivariateFunction;
22  import org.hipparchus.exception.LocalizedCoreFormats;
23  import org.hipparchus.exception.MathIllegalArgumentException;
24  import org.hipparchus.util.FastMath;
25  import org.hipparchus.util.MathArrays;
26  
27  /**
28   * Implements the representation of a real polynomial function in
29   * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
30   * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
31   * Analysis</b>, ISBN 038795452X, chapter 2.
32   * <p>
33   * The approximated function should be smooth enough for Lagrange polynomial
34   * to work well. Otherwise, consider using splines instead.</p>
35   * @see PolynomialFunctionLagrangeForm
36   * @since 4.0
37   * @param <T> type of the field elements
38   */
39  public class FieldPolynomialFunctionLagrangeForm<T extends CalculusFieldElement<T>>
40          implements CalculusFieldUnivariateFunction<T> {
41      /**
42       * The coefficients of the polynomial, ordered by degree -- i.e.
43       * coefficients[0] is the constant term and coefficients[n] is the
44       * coefficient of x^n where n is the degree of the polynomial.
45       */
46      private T[] coefficients;
47      /**
48       * Interpolating points (abscissas).
49       */
50      private final T[] x;
51      /**
52       * Function values at interpolating points.
53       */
54      private final T[] y;
55      /**
56       * Whether the polynomial coefficients are available.
57       */
58      private boolean coefficientsComputed;
59  
60      /**
61       * Construct a Lagrange polynomial with the given abscissas and function
62       * values. The order of interpolating points is important.
63       * <p>
64       * The constructor makes copy of the input arrays and assigns them.</p>
65       *
66       * @param x interpolating points
67       * @param y function values at interpolating points
68       * @throws MathIllegalArgumentException if the array lengths are different.
69       * @throws MathIllegalArgumentException if the number of points is less than 2.
70       * @throws MathIllegalArgumentException if two abscissae have the same value.
71       * @throws MathIllegalArgumentException if the abscissae are not sorted.
72       */
73      public FieldPolynomialFunctionLagrangeForm(final T[] x, final T[] y)
74          throws MathIllegalArgumentException {
75          this.x = x.clone();
76          this.y = y.clone();
77          coefficientsComputed = false;
78  
79          MathArrays.checkEqualLength(x, y);
80          if (x.length < 2) {
81              throw new MathIllegalArgumentException(LocalizedCoreFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
82          }
83          MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, true);
84      }
85  
86      /**
87       * Calculate the function value at the given point.
88       *
89       * @param z Point at which the function value is to be computed.
90       * @return the function value.
91       * @throws MathIllegalArgumentException if {@code x} and {@code y} have
92       * different lengths.
93       * @throws MathIllegalArgumentException
94       * if {@code x} is not sorted in strictly increasing order.
95       * @throws MathIllegalArgumentException if the size of {@code x} is less
96       * than 2.
97       */
98      @Override
99      public T value(final T z) {
100         int nearest = 0;
101         final int n = x.length;
102         final T[] c = y.clone();
103         final T[] d = c.clone();
104         double minDist = Double.POSITIVE_INFINITY;
105         for (int i = 0; i < n; i++) {
106             // find out the abscissa closest to z
107             final double dist = FastMath.abs(z.subtract(x[i])).getReal();
108             if (dist < minDist) {
109                 nearest = i;
110                 minDist = dist;
111             }
112         }
113 
114         // initial approximation to the function value at z
115         T value = y[nearest];
116 
117         for (int i = 1; i < n; i++) {
118             for (int j = 0; j < n-i; j++) {
119                 final T tc = x[j].subtract(z);
120                 final T td = x[i+j].subtract(z);
121                 final T divider = x[j].subtract(x[i+j]);
122                 // update the difference arrays
123                 final T w = (c[j+1].subtract(d[j])).divide(divider);
124                 c[j] = tc.multiply(w);
125                 d[j] = td.multiply(w);
126             }
127             // sum up the difference terms to get the final value
128             if (nearest < 0.5*(n-i+1)) {
129                 value = value.add(c[nearest]);    // fork down
130             } else {
131                 nearest--;
132                 value = value.add(d[nearest]);    // fork up
133             }
134         }
135 
136         return value;
137     }
138 
139     /**
140      * Returns the degree of the polynomial.
141      *
142      * @return the degree of the polynomial
143      */
144     public int degree() {
145         return x.length - 1;
146     }
147 
148     /**
149      * Returns a copy of the interpolating points array.
150      * <p>
151      * Changes made to the returned copy will not affect the polynomial.</p>
152      *
153      * @return a fresh copy of the interpolating points array
154      */
155     public T[] getInterpolatingPoints() {
156         return x.clone();
157     }
158 
159     /**
160      * Returns a copy of the interpolating values array.
161      * <p>
162      * Changes made to the returned copy will not affect the polynomial.</p>
163      *
164      * @return a fresh copy of the interpolating values array
165      */
166     public T[] getInterpolatingValues() {
167         return y.clone();
168     }
169 
170     /**
171      * Returns a copy of the coefficients array.
172      * <p>
173      * Changes made to the returned copy will not affect the polynomial.</p>
174      * <p>
175      * Note that coefficients computation can be ill-conditioned. Use with caution
176      * and only when it is necessary.</p>
177      *
178      * @return a fresh copy of the coefficients array
179      */
180     public T[] getCoefficients() {
181         if (!coefficientsComputed) {
182             computeCoefficients();
183         }
184         return coefficients.clone();
185     }
186 
187     /**
188      * Calculate the coefficients of Lagrange polynomial from the
189      * interpolation data. It takes O(n^2) time.
190      * Note that this computation can be ill-conditioned: Use with caution
191      * and only when it is necessary.
192      */
193     protected void computeCoefficients() {
194         final int n = degree() + 1;
195         final Field<T> field = x[0].getField();
196         coefficients = MathArrays.buildArray(field, n);
197 
198         // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
199         final T[] c = MathArrays.buildArray(field, n + 1);
200         c[0] = field.getOne();
201         for (int i = 0; i < n; i++) {
202             for (int j = i; j > 0; j--) {
203                 c[j] = c[j-1].subtract(c[j].multiply(x[i]));
204             }
205             c[0] = c[0].multiply(x[i].negate());
206             c[i+1] = field.getOne();
207         }
208 
209         final T[] tc = MathArrays.buildArray(field, n);
210         for (int i = 0; i < n; i++) {
211             // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
212             T d = field.getOne();
213             for (int j = 0; j < n; j++) {
214                 if (i != j) {
215                     d = d.multiply(x[i].subtract(x[j]));
216                 }
217             }
218             final T t = y[i].divide(d);
219             // Lagrange polynomial is the sum of n terms, each of which is a
220             // polynomial of degree n-1. tc[] are the coefficients of the i-th
221             // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
222             tc[n-1] = c[n];     // actually c[n] = 1
223             coefficients[n-1] = coefficients[n-1].add(t.multiply(tc[n-1]));
224             for (int j = n-2; j >= 0; j--) {
225                 tc[j] = c[j+1].add(tc[j+1].multiply(x[i]));
226                 coefficients[j] = coefficients[j].add(t.multiply(tc[j]));
227             }
228         }
229 
230         coefficientsComputed = true;
231     }
232 }