1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.hipparchus.complex;
18
19 import java.util.ArrayList;
20 import java.util.List;
21
22 import org.hipparchus.CalculusFieldElement;
23 import org.hipparchus.Field;
24 import org.hipparchus.exception.LocalizedCoreFormats;
25 import org.hipparchus.exception.MathIllegalArgumentException;
26 import org.hipparchus.exception.NullArgumentException;
27 import org.hipparchus.util.FastMath;
28 import org.hipparchus.util.FieldSinCos;
29 import org.hipparchus.util.FieldSinhCosh;
30 import org.hipparchus.util.MathArrays;
31 import org.hipparchus.util.MathUtils;
32 import org.hipparchus.util.Precision;
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 public class FieldComplex<T extends CalculusFieldElement<T>> implements CalculusFieldElement<FieldComplex<T>> {
60
61
62 private static final double LOG10 = 2.302585092994045684;
63
64
65 private final T imaginary;
66
67
68 private final T real;
69
70
71 private final transient boolean isNaN;
72
73
74 private final transient boolean isInfinite;
75
76
77
78
79
80
81 public FieldComplex(T real) {
82 this(real, real.getField().getZero());
83 }
84
85
86
87
88
89
90
91 public FieldComplex(T real, T imaginary) {
92 this.real = real;
93 this.imaginary = imaginary;
94
95 isNaN = real.isNaN() || imaginary.isNaN();
96 isInfinite = !isNaN &&
97 (real.isInfinite() || imaginary.isInfinite());
98 }
99
100
101
102
103
104
105 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getI(final Field<T> field) {
106 return new FieldComplex<>(field.getZero(), field.getOne());
107 }
108
109
110
111
112
113
114 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getMinusI(final Field<T> field) {
115 return new FieldComplex<>(field.getZero(), field.getOne().negate());
116 }
117
118
119
120
121
122
123 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getNaN(final Field<T> field) {
124 return new FieldComplex<>(field.getZero().add(Double.NaN), field.getZero().add(Double.NaN));
125 }
126
127
128
129
130
131
132 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getInf(final Field<T> field) {
133 return new FieldComplex<>(field.getZero().add(Double.POSITIVE_INFINITY), field.getZero().add(Double.POSITIVE_INFINITY));
134 }
135
136
137
138
139
140
141 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getOne(final Field<T> field) {
142 return new FieldComplex<>(field.getOne(), field.getZero());
143 }
144
145
146
147
148
149
150 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getMinusOne(final Field<T> field) {
151 return new FieldComplex<>(field.getOne().negate(), field.getZero());
152 }
153
154
155
156
157
158
159 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getZero(final Field<T> field) {
160 return new FieldComplex<>(field.getZero(), field.getZero());
161 }
162
163
164
165
166
167
168 public static <T extends CalculusFieldElement<T>> FieldComplex<T> getPi(final Field<T> field) {
169 return new FieldComplex<>(field.getZero().getPi(), field.getZero());
170 }
171
172
173
174
175
176
177
178
179
180 @Override
181 public FieldComplex<T> abs() {
182
183 return isNaN ? getNaN(getPartsField()) : createComplex(FastMath.hypot(real, imaginary), getPartsField().getZero());
184 }
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202 @Override
203 public FieldComplex<T> add(FieldComplex<T> addend) throws NullArgumentException {
204 MathUtils.checkNotNull(addend);
205 if (isNaN || addend.isNaN) {
206 return getNaN(getPartsField());
207 }
208
209 return createComplex(real.add(addend.getRealPart()),
210 imaginary.add(addend.getImaginaryPart()));
211 }
212
213
214
215
216
217
218
219
220
221 public FieldComplex<T> add(T addend) {
222 if (isNaN || addend.isNaN()) {
223 return getNaN(getPartsField());
224 }
225
226 return createComplex(real.add(addend), imaginary);
227 }
228
229
230
231
232
233
234
235
236
237 @Override
238 public FieldComplex<T> add(double addend) {
239 if (isNaN || Double.isNaN(addend)) {
240 return getNaN(getPartsField());
241 }
242
243 return createComplex(real.add(addend), imaginary);
244 }
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260 public FieldComplex<T> conjugate() {
261 if (isNaN) {
262 return getNaN(getPartsField());
263 }
264
265 return createComplex(real, imaginary.negate());
266 }
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310 @Override
311 public FieldComplex<T> divide(FieldComplex<T> divisor)
312 throws NullArgumentException {
313 MathUtils.checkNotNull(divisor);
314 if (isNaN || divisor.isNaN) {
315 return getNaN(getPartsField());
316 }
317
318 final T c = divisor.getRealPart();
319 final T d = divisor.getImaginaryPart();
320 if (c.isZero() && d.isZero()) {
321 return getNaN(getPartsField());
322 }
323
324 if (divisor.isInfinite() && !isInfinite()) {
325 return getZero(getPartsField());
326 }
327
328 if (FastMath.abs(c).getReal() < FastMath.abs(d).getReal()) {
329 T q = c.divide(d);
330 T invDen = c.multiply(q).add(d).reciprocal();
331 return createComplex(real.multiply(q).add(imaginary).multiply(invDen),
332 imaginary.multiply(q).subtract(real).multiply(invDen));
333 } else {
334 T q = d.divide(c);
335 T invDen = d.multiply(q).add(c).reciprocal();
336 return createComplex(imaginary.multiply(q).add(real).multiply(invDen),
337 imaginary.subtract(real.multiply(q)).multiply(invDen));
338 }
339 }
340
341
342
343
344
345
346
347
348
349 public FieldComplex<T> divide(T divisor) {
350 if (isNaN || divisor.isNaN()) {
351 return getNaN(getPartsField());
352 }
353 if (divisor.isZero()) {
354 return getNaN(getPartsField());
355 }
356 if (divisor.isInfinite()) {
357 return !isInfinite() ? getZero(getPartsField()) : getNaN(getPartsField());
358 }
359 return createComplex(real.divide(divisor), imaginary.divide(divisor));
360 }
361
362
363
364
365
366
367
368
369
370 @Override
371 public FieldComplex<T> divide(double divisor) {
372 if (isNaN || Double.isNaN(divisor)) {
373 return getNaN(getPartsField());
374 }
375 if (divisor == 0.0) {
376 return getNaN(getPartsField());
377 }
378 if (Double.isInfinite(divisor)) {
379 return !isInfinite() ? getZero(getPartsField()) : getNaN(getPartsField());
380 }
381 return createComplex(real.divide(divisor), imaginary.divide(divisor));
382 }
383
384
385 @Override
386 public FieldComplex<T> reciprocal() {
387 if (isNaN) {
388 return getNaN(getPartsField());
389 }
390
391 if (real.isZero() && imaginary.isZero()) {
392 return getInf(getPartsField());
393 }
394
395 if (isInfinite) {
396 return getZero(getPartsField());
397 }
398
399 if (FastMath.abs(real).getReal() < FastMath.abs(imaginary).getReal()) {
400 T q = real.divide(imaginary);
401 T scale = real.multiply(q).add(imaginary).reciprocal();
402 return createComplex(scale.multiply(q), scale.negate());
403 } else {
404 T q = imaginary.divide(real);
405 T scale = imaginary.multiply(q).add(real).reciprocal();
406 return createComplex(scale, scale.negate().multiply(q));
407 }
408 }
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434 @Override
435 public boolean equals(Object other) {
436 if (this == other) {
437 return true;
438 }
439 if (other instanceof FieldComplex){
440 @SuppressWarnings("unchecked")
441 FieldComplex<T> c = (FieldComplex<T>) other;
442 if (c.isNaN) {
443 return isNaN;
444 } else {
445 return real.equals(c.real) && imaginary.equals(c.imaginary);
446 }
447 }
448 return false;
449 }
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468 public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y, int maxUlps) {
469 return Precision.equals(x.real.getReal(), y.real.getReal(), maxUlps) &&
470 Precision.equals(x.imaginary.getReal(), y.imaginary.getReal(), maxUlps);
471 }
472
473
474
475
476
477
478
479
480
481
482 public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y) {
483 return equals(x, y, 1);
484 }
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501 public static <T extends CalculusFieldElement<T>>boolean equals(FieldComplex<T> x, FieldComplex<T> y,
502 double eps) {
503 return Precision.equals(x.real.getReal(), y.real.getReal(), eps) &&
504 Precision.equals(x.imaginary.getReal(), y.imaginary.getReal(), eps);
505 }
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522 public static <T extends CalculusFieldElement<T>>boolean equalsWithRelativeTolerance(FieldComplex<T> x,
523 FieldComplex<T> y,
524 double eps) {
525 return Precision.equalsWithRelativeTolerance(x.real.getReal(), y.real.getReal(), eps) &&
526 Precision.equalsWithRelativeTolerance(x.imaginary.getReal(), y.imaginary.getReal(), eps);
527 }
528
529
530
531
532
533
534
535
536 @Override
537 public int hashCode() {
538 if (isNaN) {
539 return 7;
540 }
541 return 37 * (17 * imaginary.hashCode() + real.hashCode());
542 }
543
544
545
546
547
548
549
550 @Override
551 public boolean isZero() {
552 return real.isZero() && imaginary.isZero();
553 }
554
555
556
557
558
559
560 public T getImaginary() {
561 return imaginary;
562 }
563
564
565
566
567
568
569 public T getImaginaryPart() {
570 return imaginary;
571 }
572
573
574
575
576
577
578 @Override
579 public double getReal() {
580 return real.getReal();
581 }
582
583
584 @Override
585 public FieldComplex<T> getAddendum() {
586 return new FieldComplex<>(real.getAddendum(), imaginary);
587 }
588
589
590
591
592
593
594 public T getRealPart() {
595 return real;
596 }
597
598
599
600
601
602
603
604
605 @Override
606 public boolean isNaN() {
607 return isNaN;
608 }
609
610
611
612
613 public boolean isReal() {
614 return imaginary.isZero();
615 }
616
617
618
619
620 public boolean isMathematicalInteger() {
621 return isReal() && Precision.isMathematicalInteger(real.getReal());
622 }
623
624
625
626
627
628
629
630
631
632
633 @Override
634 public boolean isInfinite() {
635 return isInfinite;
636 }
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660 @Override
661 public FieldComplex<T> multiply(FieldComplex<T> factor)
662 throws NullArgumentException {
663 MathUtils.checkNotNull(factor);
664 if (isNaN || factor.isNaN) {
665 return getNaN(getPartsField());
666 }
667 if (real.isInfinite() ||
668 imaginary.isInfinite() ||
669 factor.real.isInfinite() ||
670 factor.imaginary.isInfinite()) {
671
672 return getInf(getPartsField());
673 }
674 return createComplex(real.linearCombination(real, factor.real, imaginary.negate(), factor.imaginary),
675 real.linearCombination(real, factor.imaginary, imaginary, factor.real));
676 }
677
678
679
680
681
682
683
684
685
686 @Override
687 public FieldComplex<T> multiply(final int factor) {
688 if (isNaN) {
689 return getNaN(getPartsField());
690 }
691 if (real.isInfinite() || imaginary.isInfinite()) {
692 return getInf(getPartsField());
693 }
694 return createComplex(real.multiply(factor), imaginary.multiply(factor));
695 }
696
697
698
699
700
701
702
703
704
705 @Override
706 public FieldComplex<T> multiply(double factor) {
707 if (isNaN || Double.isNaN(factor)) {
708 return getNaN(getPartsField());
709 }
710 if (real.isInfinite() ||
711 imaginary.isInfinite() ||
712 Double.isInfinite(factor)) {
713
714 return getInf(getPartsField());
715 }
716 return createComplex(real.multiply(factor), imaginary.multiply(factor));
717 }
718
719
720
721
722
723
724
725
726
727 public FieldComplex<T> multiply(T factor) {
728 if (isNaN || factor.isNaN()) {
729 return getNaN(getPartsField());
730 }
731 if (real.isInfinite() ||
732 imaginary.isInfinite() ||
733 factor.isInfinite()) {
734
735 return getInf(getPartsField());
736 }
737 return createComplex(real.multiply(factor), imaginary.multiply(factor));
738 }
739
740
741
742
743
744 public FieldComplex<T> multiplyPlusI() {
745 return createComplex(imaginary.negate(), real);
746 }
747
748
749
750
751
752 public FieldComplex<T> multiplyMinusI() {
753 return createComplex(imaginary, real.negate());
754 }
755
756 @Override
757 public FieldComplex<T> square() {
758 return multiply(this);
759 }
760
761
762
763
764
765
766
767
768 @Override
769 public FieldComplex<T> negate() {
770 if (isNaN) {
771 return getNaN(getPartsField());
772 }
773
774 return createComplex(real.negate(), imaginary.negate());
775 }
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793 @Override
794 public FieldComplex<T> subtract(FieldComplex<T> subtrahend)
795 throws NullArgumentException {
796 MathUtils.checkNotNull(subtrahend);
797 if (isNaN || subtrahend.isNaN) {
798 return getNaN(getPartsField());
799 }
800
801 return createComplex(real.subtract(subtrahend.getRealPart()),
802 imaginary.subtract(subtrahend.getImaginaryPart()));
803 }
804
805
806
807
808
809
810
811
812
813 @Override
814 public FieldComplex<T> subtract(double subtrahend) {
815 if (isNaN || Double.isNaN(subtrahend)) {
816 return getNaN(getPartsField());
817 }
818 return createComplex(real.subtract(subtrahend), imaginary);
819 }
820
821
822
823
824
825
826
827
828
829 public FieldComplex<T> subtract(T subtrahend) {
830 if (isNaN || subtrahend.isNaN()) {
831 return getNaN(getPartsField());
832 }
833 return createComplex(real.subtract(subtrahend), imaginary);
834 }
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849 @Override
850 public FieldComplex<T> acos() {
851 if (isNaN) {
852 return getNaN(getPartsField());
853 }
854
855 return this.add(this.sqrt1z().multiplyPlusI()).log().multiplyMinusI();
856 }
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871 @Override
872 public FieldComplex<T> asin() {
873 if (isNaN) {
874 return getNaN(getPartsField());
875 }
876
877 return sqrt1z().add(this.multiplyPlusI()).log().multiplyMinusI();
878 }
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893 @Override
894 public FieldComplex<T> atan() {
895 if (isNaN) {
896 return getNaN(getPartsField());
897 }
898
899 final T one = getPartsField().getOne();
900 if (real.isZero()) {
901
902
903 if (imaginary.multiply(imaginary).subtract(one).isZero()) {
904 return getNaN(getPartsField());
905 }
906
907
908 final T zero = getPartsField().getZero();
909 final FieldComplex<T> tmp = createComplex(one.add(imaginary).divide(one.subtract(imaginary)), zero).
910 log().multiplyPlusI().multiply(0.5);
911 return createComplex(FastMath.copySign(tmp.real, real), tmp.imaginary);
912
913 } else if (imaginary.isZero()) {
914
915 return createComplex(FastMath.atan(real), imaginary);
916 } else {
917
918 final FieldComplex<T> n = createComplex(one.add(imaginary), real.negate());
919 final FieldComplex<T> d = createComplex(one.subtract(imaginary), real);
920 return n.divide(d).log().multiplyPlusI().multiply(0.5);
921 }
922
923 }
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953 @Override
954 public FieldComplex<T> cos() {
955 if (isNaN) {
956 return getNaN(getPartsField());
957 }
958
959 final FieldSinCos<T> scr = FastMath.sinCos(real);
960 final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
961 return createComplex(scr.cos().multiply(schi.cosh()), scr.sin().negate().multiply(schi.sinh()));
962 }
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994 @Override
995 public FieldComplex<T> cosh() {
996 if (isNaN) {
997 return getNaN(getPartsField());
998 }
999
1000 final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
1001 final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
1002 return createComplex(schr.cosh().multiply(sci.cos()), schr.sinh().multiply(sci.sin()));
1003 }
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036 @Override
1037 public FieldComplex<T> exp() {
1038 if (isNaN) {
1039 return getNaN(getPartsField());
1040 }
1041
1042 final T expReal = FastMath.exp(real);
1043 final FieldSinCos<T> sc = FastMath.sinCos(imaginary);
1044 return createComplex(expReal.multiply(sc.cos()), expReal.multiply(sc.sin()));
1045 }
1046
1047
1048 @Override
1049 public FieldComplex<T> expm1() {
1050 if (isNaN) {
1051 return getNaN(getPartsField());
1052 }
1053
1054 final T expm1Real = FastMath.expm1(real);
1055 final FieldSinCos<T> sc = FastMath.sinCos(imaginary);
1056 return createComplex(expm1Real.multiply(sc.cos()), expm1Real.multiply(sc.sin()));
1057 }
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093 @Override
1094 public FieldComplex<T> log() {
1095 if (isNaN) {
1096 return getNaN(getPartsField());
1097 }
1098
1099 return createComplex(FastMath.log(FastMath.hypot(real, imaginary)),
1100 FastMath.atan2(imaginary, real));
1101 }
1102
1103
1104 @Override
1105 public FieldComplex<T> log1p() {
1106 return add(1.0).log();
1107 }
1108
1109
1110 @Override
1111 public FieldComplex<T> log10() {
1112 return log().divide(LOG10);
1113 }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130 @Override
1131 public FieldComplex<T> pow(FieldComplex<T> x)
1132 throws NullArgumentException {
1133
1134 MathUtils.checkNotNull(x);
1135
1136 if (x.imaginary.isZero()) {
1137 final int nx = (int) FastMath.rint(x.real.getReal());
1138 if (x.real.getReal() == nx) {
1139
1140 return pow(nx);
1141 } else if (this.imaginary.isZero()) {
1142
1143 final T realPow = FastMath.pow(this.real, x.real);
1144 if (realPow.isFinite()) {
1145 return createComplex(realPow, getPartsField().getZero());
1146 }
1147 }
1148 }
1149
1150
1151 return this.log().multiply(x).exp();
1152
1153 }
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170 public FieldComplex<T> pow(T x) {
1171
1172 final int nx = (int) FastMath.rint(x.getReal());
1173 if (x.getReal() == nx) {
1174
1175 return pow(nx);
1176 } else if (this.imaginary.isZero()) {
1177
1178 final T realPow = FastMath.pow(this.real, x);
1179 if (realPow.isFinite()) {
1180 return createComplex(realPow, getPartsField().getZero());
1181 }
1182 }
1183
1184
1185 return this.log().multiply(x).exp();
1186
1187 }
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203 @Override
1204 public FieldComplex<T> pow(double x) {
1205
1206 final int nx = (int) FastMath.rint(x);
1207 if (x == nx) {
1208
1209 return pow(nx);
1210 } else if (this.imaginary.isZero()) {
1211
1212 final T realPow = FastMath.pow(this.real, x);
1213 if (realPow.isFinite()) {
1214 return createComplex(realPow, getPartsField().getZero());
1215 }
1216 }
1217
1218
1219 return this.log().multiply(x).exp();
1220
1221 }
1222
1223
1224 @Override
1225 public FieldComplex<T> pow(final int n) {
1226
1227 FieldComplex<T> result = getField().getOne();
1228 final boolean invert;
1229 int p = n;
1230 if (p < 0) {
1231 invert = true;
1232 p = -p;
1233 } else {
1234 invert = false;
1235 }
1236
1237
1238 FieldComplex<T> square = this;
1239 while (p > 0) {
1240 if ((p & 0x1) > 0) {
1241 result = result.multiply(square);
1242 }
1243 square = square.multiply(square);
1244 p = p >> 1;
1245 }
1246
1247 return invert ? result.reciprocal() : result;
1248
1249 }
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282 @Override
1283 public FieldComplex<T> sin() {
1284 if (isNaN) {
1285 return getNaN(getPartsField());
1286 }
1287
1288 final FieldSinCos<T> scr = FastMath.sinCos(real);
1289 final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
1290 return createComplex(scr.sin().multiply(schi.cosh()), scr.cos().multiply(schi.sinh()));
1291
1292 }
1293
1294
1295
1296 @Override
1297 public FieldSinCos<FieldComplex<T>> sinCos() {
1298 if (isNaN) {
1299 return new FieldSinCos<>(getNaN(getPartsField()), getNaN(getPartsField()));
1300 }
1301
1302 final FieldSinCos<T> scr = FastMath.sinCos(real);
1303 final FieldSinhCosh<T> schi = FastMath.sinhCosh(imaginary);
1304 return new FieldSinCos<>(createComplex(scr.sin().multiply(schi.cosh()), scr.cos().multiply(schi.sinh())),
1305 createComplex(scr.cos().multiply(schi.cosh()), scr.sin().negate().multiply(schi.sinh())));
1306 }
1307
1308
1309 @Override
1310 public FieldComplex<T> atan2(FieldComplex<T> x) {
1311
1312
1313 final FieldComplex<T> r = x.square().add(multiply(this)).sqrt();
1314
1315 if (x.real.getReal() >= 0) {
1316
1317 return divide(r.add(x)).atan().multiply(2);
1318 } else {
1319
1320 return divide(r.subtract(x)).atan().multiply(-2).add(x.real.getPi());
1321 }
1322 }
1323
1324
1325
1326
1327
1328
1329 @Override
1330 public FieldComplex<T> acosh() {
1331 final FieldComplex<T> sqrtPlus = add(1).sqrt();
1332 final FieldComplex<T> sqrtMinus = subtract(1).sqrt();
1333 return add(sqrtPlus.multiply(sqrtMinus)).log();
1334 }
1335
1336
1337
1338
1339
1340
1341 @Override
1342 public FieldComplex<T> asinh() {
1343 return add(multiply(this).add(1.0).sqrt()).log();
1344 }
1345
1346
1347
1348
1349
1350
1351 @Override
1352 public FieldComplex<T> atanh() {
1353 final FieldComplex<T> logPlus = add(1).log();
1354 final FieldComplex<T> logMinus = createComplex(getPartsField().getOne().subtract(real), imaginary.negate()).log();
1355 return logPlus.subtract(logMinus).multiply(0.5);
1356 }
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388 @Override
1389 public FieldComplex<T> sinh() {
1390 if (isNaN) {
1391 return getNaN(getPartsField());
1392 }
1393
1394 final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
1395 final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
1396 return createComplex(schr.sinh().multiply(sci.cos()), schr.cosh().multiply(sci.sin()));
1397 }
1398
1399
1400
1401 @Override
1402 public FieldSinhCosh<FieldComplex<T>> sinhCosh() {
1403 if (isNaN) {
1404 return new FieldSinhCosh<>(getNaN(getPartsField()), getNaN(getPartsField()));
1405 }
1406
1407 final FieldSinhCosh<T> schr = FastMath.sinhCosh(real);
1408 final FieldSinCos<T> sci = FastMath.sinCos(imaginary);
1409 return new FieldSinhCosh<>(createComplex(schr.sinh().multiply(sci.cos()), schr.cosh().multiply(sci.sin())),
1410 createComplex(schr.cosh().multiply(sci.cos()), schr.sinh().multiply(sci.sin())));
1411 }
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449 @Override
1450 public FieldComplex<T> sqrt() {
1451 if (isNaN) {
1452 return getNaN(getPartsField());
1453 }
1454
1455 if (isZero()) {
1456 return getZero(getPartsField());
1457 }
1458
1459 T t = FastMath.sqrt((FastMath.abs(real).add(FastMath.hypot(real, imaginary))).multiply(0.5));
1460 if (real.getReal() >= 0.0) {
1461 return createComplex(t, imaginary.divide(t.multiply(2)));
1462 } else {
1463 return createComplex(FastMath.abs(imaginary).divide(t.multiply(2)),
1464 FastMath.copySign(t, imaginary));
1465 }
1466 }
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484 public FieldComplex<T> sqrt1z() {
1485 final FieldComplex<T> t2 = this.square();
1486 return createComplex(getPartsField().getOne().subtract(t2.real), t2.imaginary.negate()).sqrt();
1487 }
1488
1489
1490
1491
1492
1493
1494 @Override
1495 public FieldComplex<T> cbrt() {
1496 final T magnitude = FastMath.cbrt(abs().getRealPart());
1497 final FieldSinCos<T> sc = FastMath.sinCos(getArgument().divide(3));
1498 return createComplex(magnitude.multiply(sc.cos()), magnitude.multiply(sc.sin()));
1499 }
1500
1501
1502
1503
1504
1505
1506 @Override
1507 public FieldComplex<T> rootN(int n) {
1508 final T magnitude = FastMath.pow(abs().getRealPart(), 1.0 / n);
1509 final FieldSinCos<T> sc = FastMath.sinCos(getArgument().divide(n));
1510 return createComplex(magnitude.multiply(sc.cos()), magnitude.multiply(sc.sin()));
1511 }
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544 @Override
1545 public FieldComplex<T> tan() {
1546 if (isNaN || real.isInfinite()) {
1547 return getNaN(getPartsField());
1548 }
1549 if (imaginary.getReal() > 20.0) {
1550 return getI(getPartsField());
1551 }
1552 if (imaginary.getReal() < -20.0) {
1553 return getMinusI(getPartsField());
1554 }
1555
1556 final FieldSinCos<T> sc2r = FastMath.sinCos(real.multiply(2));
1557 T imaginary2 = imaginary.multiply(2);
1558 T d = sc2r.cos().add(FastMath.cosh(imaginary2));
1559
1560 return createComplex(sc2r.sin().divide(d), FastMath.sinh(imaginary2).divide(d));
1561
1562 }
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595 @Override
1596 public FieldComplex<T> tanh() {
1597 if (isNaN || imaginary.isInfinite()) {
1598 return getNaN(getPartsField());
1599 }
1600 if (real.getReal() > 20.0) {
1601 return getOne(getPartsField());
1602 }
1603 if (real.getReal() < -20.0) {
1604 return getMinusOne(getPartsField());
1605 }
1606 T real2 = real.multiply(2);
1607 final FieldSinCos<T> sc2i = FastMath.sinCos(imaginary.multiply(2));
1608 T d = FastMath.cosh(real2).add(sc2i.cos());
1609
1610 return createComplex(FastMath.sinh(real2).divide(d), sc2i.sin().divide(d));
1611 }
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632 public T getArgument() {
1633 return FastMath.atan2(getImaginaryPart(), getRealPart());
1634 }
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657 public List<FieldComplex<T>> nthRoot(int n) throws MathIllegalArgumentException {
1658
1659 if (n <= 0) {
1660 throw new MathIllegalArgumentException(LocalizedCoreFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
1661 n);
1662 }
1663
1664 final List<FieldComplex<T>> result = new ArrayList<>();
1665
1666 if (isNaN) {
1667 result.add(getNaN(getPartsField()));
1668 return result;
1669 }
1670 if (isInfinite()) {
1671 result.add(getInf(getPartsField()));
1672 return result;
1673 }
1674
1675
1676 final T nthRootOfAbs = FastMath.pow(FastMath.hypot(real, imaginary), 1.0 / n);
1677
1678
1679 final T nthPhi = getArgument().divide(n);
1680 final double slice = 2 * FastMath.PI / n;
1681 T innerPart = nthPhi;
1682 for (int k = 0; k < n ; k++) {
1683
1684 final FieldSinCos<T> scInner = FastMath.sinCos(innerPart);
1685 final T realPart = nthRootOfAbs.multiply(scInner.cos());
1686 final T imaginaryPart = nthRootOfAbs.multiply(scInner.sin());
1687 result.add(createComplex(realPart, imaginaryPart));
1688 innerPart = innerPart.add(slice);
1689 }
1690
1691 return result;
1692 }
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703 protected FieldComplex<T> createComplex(final T realPart, final T imaginaryPart) {
1704 return new FieldComplex<>(realPart, imaginaryPart);
1705 }
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715 public static <T extends CalculusFieldElement<T>> FieldComplex<T>
1716 valueOf(T realPart, T imaginaryPart) {
1717 if (realPart.isNaN() || imaginaryPart.isNaN()) {
1718 return getNaN(realPart.getField());
1719 }
1720 return new FieldComplex<>(realPart, imaginaryPart);
1721 }
1722
1723
1724
1725
1726
1727
1728
1729
1730 public static <T extends CalculusFieldElement<T>> FieldComplex<T>
1731 valueOf(T realPart) {
1732 if (realPart.isNaN()) {
1733 return getNaN(realPart.getField());
1734 }
1735 return new FieldComplex<>(realPart);
1736 }
1737
1738
1739 @Override
1740 public FieldComplex<T> newInstance(double realPart) {
1741 return valueOf(getPartsField().getZero().newInstance(realPart));
1742 }
1743
1744
1745 @Override
1746 public FieldComplexField<T> getField() {
1747 return FieldComplexField.getField(getPartsField());
1748 }
1749
1750
1751
1752
1753 public Field<T> getPartsField() {
1754 return real.getField();
1755 }
1756
1757
1758 @Override
1759 public String toString() {
1760 return "(" + real + ", " + imaginary + ")";
1761 }
1762
1763
1764 @Override
1765 public FieldComplex<T> scalb(int n) {
1766 return createComplex(FastMath.scalb(real, n), FastMath.scalb(imaginary, n));
1767 }
1768
1769
1770 @Override
1771 public FieldComplex<T> ulp() {
1772 return createComplex(FastMath.ulp(real), FastMath.ulp(imaginary));
1773 }
1774
1775
1776 @Override
1777 public FieldComplex<T> hypot(FieldComplex<T> y) {
1778 if (isInfinite() || y.isInfinite()) {
1779 return getInf(getPartsField());
1780 } else if (isNaN() || y.isNaN()) {
1781 return getNaN(getPartsField());
1782 } else {
1783 return square().add(y.square()).sqrt();
1784 }
1785 }
1786
1787
1788 @Override
1789 public FieldComplex<T> linearCombination(final FieldComplex<T>[] a, final FieldComplex<T>[] b)
1790 throws MathIllegalArgumentException {
1791 final int n = 2 * a.length;
1792 final T[] realA = MathArrays.buildArray(getPartsField(), n);
1793 final T[] realB = MathArrays.buildArray(getPartsField(), n);
1794 final T[] imaginaryA = MathArrays.buildArray(getPartsField(), n);
1795 final T[] imaginaryB = MathArrays.buildArray(getPartsField(), n);
1796 for (int i = 0; i < a.length; ++i) {
1797 final FieldComplex<T> ai = a[i];
1798 final FieldComplex<T> bi = b[i];
1799 realA[2 * i ] = ai.real;
1800 realA[2 * i + 1] = ai.imaginary.negate();
1801 realB[2 * i ] = bi.real;
1802 realB[2 * i + 1] = bi.imaginary;
1803 imaginaryA[2 * i ] = ai.real;
1804 imaginaryA[2 * i + 1] = ai.imaginary;
1805 imaginaryB[2 * i ] = bi.imaginary;
1806 imaginaryB[2 * i + 1] = bi.real;
1807 }
1808 return createComplex(real.linearCombination(realA, realB),
1809 real.linearCombination(imaginaryA, imaginaryB));
1810 }
1811
1812
1813 @Override
1814 public FieldComplex<T> linearCombination(final double[] a, final FieldComplex<T>[] b)
1815 throws MathIllegalArgumentException {
1816 final int n = a.length;
1817 final T[] realB = MathArrays.buildArray(getPartsField(), n);
1818 final T[] imaginaryB = MathArrays.buildArray(getPartsField(), n);
1819 for (int i = 0; i < a.length; ++i) {
1820 final FieldComplex<T> bi = b[i];
1821 realB[i] = bi.real;
1822 imaginaryB[i] = bi.imaginary;
1823 }
1824 return createComplex(real.linearCombination(a, realB),
1825 real.linearCombination(a, imaginaryB));
1826 }
1827
1828
1829 @Override
1830 public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1, final FieldComplex<T> a2, final FieldComplex<T> b2) {
1831 return createComplex(real.linearCombination(a1.real, b1.real,
1832 a1.imaginary.negate(), b1.imaginary,
1833 a2.real, b2.real,
1834 a2.imaginary.negate(), b2.imaginary),
1835 real.linearCombination(a1.real, b1.imaginary,
1836 a1.imaginary, b1.real,
1837 a2.real, b2.imaginary,
1838 a2.imaginary, b2.real));
1839 }
1840
1841
1842 @Override
1843 public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1, final double a2, final FieldComplex<T> b2) {
1844 return createComplex(real.linearCombination(a1, b1.real,
1845 a2, b2.real),
1846 real.linearCombination(a1, b1.imaginary,
1847 a2, b2.imaginary));
1848 }
1849
1850
1851 @Override
1852 public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1,
1853 final FieldComplex<T> a2, final FieldComplex<T> b2,
1854 final FieldComplex<T> a3, final FieldComplex<T> b3) {
1855 FieldComplex<T>[] a = MathArrays.buildArray(getField(), 3);
1856 a[0] = a1;
1857 a[1] = a2;
1858 a[2] = a3;
1859 FieldComplex<T>[] b = MathArrays.buildArray(getField(), 3);
1860 b[0] = b1;
1861 b[1] = b2;
1862 b[2] = b3;
1863 return linearCombination(a, b);
1864 }
1865
1866
1867 @Override
1868 public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1,
1869 final double a2, final FieldComplex<T> b2,
1870 final double a3, final FieldComplex<T> b3) {
1871 FieldComplex<T>[] b = MathArrays.buildArray(getField(), 3);
1872 b[0] = b1;
1873 b[1] = b2;
1874 b[2] = b3;
1875 return linearCombination(new double[] { a1, a2, a3 }, b);
1876 }
1877
1878
1879 @Override
1880 public FieldComplex<T> linearCombination(final FieldComplex<T> a1, final FieldComplex<T> b1,
1881 final FieldComplex<T> a2, final FieldComplex<T> b2,
1882 final FieldComplex<T> a3, final FieldComplex<T> b3,
1883 final FieldComplex<T> a4, final FieldComplex<T> b4) {
1884 FieldComplex<T>[] a = MathArrays.buildArray(getField(), 4);
1885 a[0] = a1;
1886 a[1] = a2;
1887 a[2] = a3;
1888 a[3] = a4;
1889 FieldComplex<T>[] b = MathArrays.buildArray(getField(), 4);
1890 b[0] = b1;
1891 b[1] = b2;
1892 b[2] = b3;
1893 b[3] = b4;
1894 return linearCombination(a, b);
1895 }
1896
1897
1898 @Override
1899 public FieldComplex<T> linearCombination(final double a1, final FieldComplex<T> b1,
1900 final double a2, final FieldComplex<T> b2,
1901 final double a3, final FieldComplex<T> b3,
1902 final double a4, final FieldComplex<T> b4) {
1903 FieldComplex<T>[] b = MathArrays.buildArray(getField(), 4);
1904 b[0] = b1;
1905 b[1] = b2;
1906 b[2] = b3;
1907 b[3] = b4;
1908 return linearCombination(new double[] { a1, a2, a3, a4 }, b);
1909 }
1910
1911
1912 @Override
1913 public FieldComplex<T> ceil() {
1914 return createComplex(FastMath.ceil(getRealPart()), FastMath.ceil(getImaginaryPart()));
1915 }
1916
1917
1918 @Override
1919 public FieldComplex<T> floor() {
1920 return createComplex(FastMath.floor(getRealPart()), FastMath.floor(getImaginaryPart()));
1921 }
1922
1923
1924 @Override
1925 public FieldComplex<T> rint() {
1926 return createComplex(FastMath.rint(getRealPart()), FastMath.rint(getImaginaryPart()));
1927 }
1928
1929
1930
1931
1932
1933
1934
1935 @Override
1936 public FieldComplex<T> remainder(final double a) {
1937 return createComplex(FastMath.IEEEremainder(getRealPart(), a), FastMath.IEEEremainder(getImaginaryPart(), a));
1938 }
1939
1940
1941
1942
1943
1944
1945
1946 @Override
1947 public FieldComplex<T> remainder(final FieldComplex<T> a) {
1948 final FieldComplex<T> complexQuotient = divide(a);
1949 final T qRInt = FastMath.rint(complexQuotient.real);
1950 final T qIInt = FastMath.rint(complexQuotient.imaginary);
1951 return createComplex(real.subtract(qRInt.multiply(a.real)).add(qIInt.multiply(a.imaginary)),
1952 imaginary.subtract(qRInt.multiply(a.imaginary)).subtract(qIInt.multiply(a.real)));
1953 }
1954
1955
1956 @Override
1957 public FieldComplex<T> sign() {
1958 if (isNaN() || isZero()) {
1959 return this;
1960 } else {
1961 return this.divide(FastMath.hypot(real, imaginary));
1962 }
1963 }
1964
1965
1966
1967
1968
1969
1970 @Override
1971 public FieldComplex<T> copySign(final FieldComplex<T> z) {
1972 return createComplex(FastMath.copySign(getRealPart(), z.getRealPart()),
1973 FastMath.copySign(getImaginaryPart(), z.getImaginaryPart()));
1974 }
1975
1976
1977 @Override
1978 public FieldComplex<T> copySign(double r) {
1979 return createComplex(FastMath.copySign(getRealPart(), r), FastMath.copySign(getImaginaryPart(), r));
1980 }
1981
1982
1983 @Override
1984 public FieldComplex<T> toDegrees() {
1985 return createComplex(FastMath.toDegrees(getRealPart()), FastMath.toDegrees(getImaginaryPart()));
1986 }
1987
1988
1989 @Override
1990 public FieldComplex<T> toRadians() {
1991 return createComplex(FastMath.toRadians(getRealPart()), FastMath.toRadians(getImaginaryPart()));
1992 }
1993
1994
1995 @Override
1996 public FieldComplex<T> getPi() {
1997 return getPi(getPartsField());
1998 }
1999
2000 }