View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.fitting;
23  
24  import java.util.ArrayList;
25  import java.util.Collection;
26  import java.util.Comparator;
27  import java.util.List;
28  
29  import org.hipparchus.analysis.function.Gaussian;
30  import org.hipparchus.exception.LocalizedCoreFormats;
31  import org.hipparchus.exception.MathIllegalArgumentException;
32  import org.hipparchus.linear.DiagonalMatrix;
33  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
34  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
35  import org.hipparchus.util.FastMath;
36  import org.hipparchus.util.MathUtils;
37  
38  /**
39   * Fits points to a {@link
40   * org.hipparchus.analysis.function.Gaussian.Parametric Gaussian}
41   * function.
42   * <br>
43   * The {@link #withStartPoint(double[]) initial guess values} must be passed
44   * in the following order:
45   * <ul>
46   *  <li>Normalization</li>
47   *  <li>Mean</li>
48   *  <li>Sigma</li>
49   * </ul>
50   * The optimal values will be returned in the same order.
51   *
52   * <p>
53   * Usage example:
54   * <pre>
55   *   WeightedObservedPoints obs = new WeightedObservedPoints();
56   *   obs.add(4.0254623,  531026.0);
57   *   obs.add(4.03128248, 984167.0);
58   *   obs.add(4.03839603, 1887233.0);
59   *   obs.add(4.04421621, 2687152.0);
60   *   obs.add(4.05132976, 3461228.0);
61   *   obs.add(4.05326982, 3580526.0);
62   *   obs.add(4.05779662, 3439750.0);
63   *   obs.add(4.0636168,  2877648.0);
64   *   obs.add(4.06943698, 2175960.0);
65   *   obs.add(4.07525716, 1447024.0);
66   *   obs.add(4.08237071, 717104.0);
67   *   obs.add(4.08366408, 620014.0);
68   *   double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
69   * </pre>
70   *
71   */
72  public class GaussianCurveFitter extends AbstractCurveFitter {
73      /** Parametric function to be fitted. */
74      private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
75              /** {@inheritDoc} */
76              @Override
77              public double value(double x, double ... p) {
78                  double v = Double.POSITIVE_INFINITY;
79                  try {
80                      v = super.value(x, p);
81                  } catch (MathIllegalArgumentException e) { // NOPMD
82                      // Do nothing.
83                  }
84                  return v;
85              }
86  
87              /** {@inheritDoc} */
88              @Override
89              public double[] gradient(double x, double ... p) {
90                  double[] v = { Double.POSITIVE_INFINITY,
91                                 Double.POSITIVE_INFINITY,
92                                 Double.POSITIVE_INFINITY };
93                  try {
94                      v = super.gradient(x, p);
95                  } catch (MathIllegalArgumentException e) { // NOPMD
96                      // Do nothing.
97                  }
98                  return v;
99              }
100         };
101     /** Initial guess. */
102     private final double[] initialGuess;
103     /** Maximum number of iterations of the optimization algorithm. */
104     private final int maxIter;
105 
106     /**
107      * Constructor used by the factory methods.
108      *
109      * @param initialGuess Initial guess. If set to {@code null}, the initial guess
110      * will be estimated using the {@link ParameterGuesser}.
111      * @param maxIter Maximum number of iterations of the optimization algorithm.
112      */
113     private GaussianCurveFitter(double[] initialGuess, int maxIter) {
114         this.initialGuess = initialGuess == null ? null : initialGuess.clone();
115         this.maxIter = maxIter;
116     }
117 
118     /**
119      * Creates a default curve fitter.
120      * The initial guess for the parameters will be {@link ParameterGuesser}
121      * computed automatically, and the maximum number of iterations of the
122      * optimization algorithm is set to {@link Integer#MAX_VALUE}.
123      *
124      * @return a curve fitter.
125      *
126      * @see #withStartPoint(double[])
127      * @see #withMaxIterations(int)
128      */
129     public static GaussianCurveFitter create() {
130         return new GaussianCurveFitter(null, Integer.MAX_VALUE);
131     }
132 
133     /**
134      * Configure the start point (initial guess).
135      * @param newStart new start point (initial guess)
136      * @return a new instance.
137      */
138     public GaussianCurveFitter withStartPoint(double[] newStart) {
139         return new GaussianCurveFitter(newStart.clone(),
140                                        maxIter);
141     }
142 
143     /**
144      * Configure the maximum number of iterations.
145      * @param newMaxIter maximum number of iterations
146      * @return a new instance.
147      */
148     public GaussianCurveFitter withMaxIterations(int newMaxIter) {
149         return new GaussianCurveFitter(initialGuess,
150                                        newMaxIter);
151     }
152 
153     /** {@inheritDoc} */
154     @Override
155     protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
156 
157         // Prepare least-squares problem.
158         final int len = observations.size();
159         final double[] target  = new double[len];
160         final double[] weights = new double[len];
161 
162         int i = 0;
163         for (WeightedObservedPoint obs : observations) {
164             target[i]  = obs.getY();
165             weights[i] = obs.getWeight();
166             ++i;
167         }
168 
169         final AbstractCurveFitter.TheoreticalValuesFunction model =
170                 new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
171 
172         final double[] startPoint = initialGuess != null ?
173             initialGuess :
174             // Compute estimation.
175             new ParameterGuesser(observations).guess();
176 
177         // Return a new least squares problem set up to fit a Gaussian curve to the
178         // observed points.
179         return new LeastSquaresBuilder().
180                 maxEvaluations(Integer.MAX_VALUE).
181                 maxIterations(maxIter).
182                 start(startPoint).
183                 target(target).
184                 weight(new DiagonalMatrix(weights)).
185                 model(model.getModelFunction(), model.getModelFunctionJacobian()).
186                 build();
187 
188     }
189 
190     /**
191      * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
192      * of a {@link org.hipparchus.analysis.function.Gaussian.Parametric}
193      * based on the specified observed points.
194      */
195     public static class ParameterGuesser {
196         /** Normalization factor. */
197         private final double norm;
198         /** Mean. */
199         private final double mean;
200         /** Standard deviation. */
201         private final double sigma;
202 
203         /**
204          * Constructs instance with the specified observed points.
205          *
206          * @param observations Observed points from which to guess the
207          * parameters of the Gaussian.
208          * @throws org.hipparchus.exception.NullArgumentException if {@code observations} is
209          * {@code null}.
210          * @throws MathIllegalArgumentException if there are less than 3
211          * observations.
212          */
213         public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
214             MathUtils.checkNotNull(observations);
215             if (observations.size() < 3) {
216                 throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
217                                                        observations.size(), 3);
218             }
219 
220             final List<WeightedObservedPoint> sorted = sortObservations(observations);
221             final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
222 
223             norm = params[0];
224             mean = params[1];
225             sigma = params[2];
226         }
227 
228         /**
229          * Gets an estimation of the parameters.
230          *
231          * @return the guessed parameters, in the following order:
232          * <ul>
233          *  <li>Normalization factor</li>
234          *  <li>Mean</li>
235          *  <li>Standard deviation</li>
236          * </ul>
237          */
238         public double[] guess() {
239             return new double[] { norm, mean, sigma };
240         }
241 
242         /**
243          * Sort the observations.
244          *
245          * @param unsorted Input observations.
246          * @return the input observations, sorted.
247          */
248         private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
249             final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
250 
251             final Comparator<WeightedObservedPoint> cmp = new Comparator<WeightedObservedPoint>() {
252                 /** {@inheritDoc} */
253                 @Override
254                 public int compare(WeightedObservedPoint p1,
255                                    WeightedObservedPoint p2) {
256                     if (p1 == null && p2 == null) {
257                         return 0;
258                     }
259                     if (p1 == null) {
260                         return -1;
261                     }
262                     if (p2 == null) {
263                         return 1;
264                     }
265                     int comp = Double.compare(p1.getX(), p2.getX());
266                     if (comp != 0) {
267                         return comp;
268                     }
269                     comp = Double.compare(p1.getY(), p2.getY());
270                     if (comp != 0) {
271                         return comp;
272                     }
273                     comp = Double.compare(p1.getWeight(), p2.getWeight());
274                     if (comp != 0) {
275                         return comp;
276                     }
277                     return 0;
278                 }
279             };
280 
281             observations.sort(cmp);
282             return observations;
283         }
284 
285         /**
286          * Guesses the parameters based on the specified observed points.
287          *
288          * @param points Observed points, sorted.
289          * @return the guessed parameters (normalization factor, mean and
290          * sigma).
291          */
292         private double[] basicGuess(WeightedObservedPoint[] points) {
293             final int maxYIdx = findMaxY(points);
294             final double n = points[maxYIdx].getY();
295             final double m = points[maxYIdx].getX();
296 
297             double fwhmApprox;
298             try {
299                 final double halfY = n + ((m - n) / 2);
300                 final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
301                 final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
302                 fwhmApprox = fwhmX2 - fwhmX1;
303             } catch (MathIllegalArgumentException e) {
304                 // TODO: Exceptions should not be used for flow control.
305                 fwhmApprox = points[points.length - 1].getX() - points[0].getX();
306             }
307             final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
308 
309             return new double[] { n, m, s };
310         }
311 
312         /**
313          * Finds index of point in specified points with the largest Y.
314          *
315          * @param points Points to search.
316          * @return the index in specified points array.
317          */
318         private int findMaxY(WeightedObservedPoint[] points) {
319             int maxYIdx = 0;
320             for (int i = 1; i < points.length; i++) {
321                 if (points[i].getY() > points[maxYIdx].getY()) {
322                     maxYIdx = i;
323                 }
324             }
325             return maxYIdx;
326         }
327 
328         /**
329          * Interpolates using the specified points to determine X at the
330          * specified Y.
331          *
332          * @param points Points to use for interpolation.
333          * @param startIdx Index within points from which to start the search for
334          * interpolation bounds points.
335          * @param idxStep Index step for searching interpolation bounds points.
336          * @param y Y value for which X should be determined.
337          * @return the value of X for the specified Y.
338          * @throws MathIllegalArgumentException if {@code idxStep} is 0.
339          * @throws MathIllegalArgumentException if specified {@code y} is not within the
340          * range of the specified {@code points}.
341          */
342         private double interpolateXAtY(WeightedObservedPoint[] points,
343                                        int startIdx,
344                                        int idxStep,
345                                        double y)
346             throws MathIllegalArgumentException {
347             if (idxStep == 0) {
348                 throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
349             }
350             final WeightedObservedPoint[] twoPoints
351                 = getInterpolationPointsForY(points, startIdx, idxStep, y);
352             final WeightedObservedPoint p1 = twoPoints[0];
353             final WeightedObservedPoint p2 = twoPoints[1];
354             if (p1.getY() == y) {
355                 return p1.getX();
356             }
357             if (p2.getY() == y) {
358                 return p2.getX();
359             }
360             return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
361                                 (p2.getY() - p1.getY()));
362         }
363 
364         /**
365          * Gets the two bounding interpolation points from the specified points
366          * suitable for determining X at the specified Y.
367          *
368          * @param points Points to use for interpolation.
369          * @param startIdx Index within points from which to start search for
370          * interpolation bounds points.
371          * @param idxStep Index step for search for interpolation bounds points.
372          * @param y Y value for which X should be determined.
373          * @return the array containing two points suitable for determining X at
374          * the specified Y.
375          * @throws MathIllegalArgumentException if {@code idxStep} is 0.
376          * @throws MathIllegalArgumentException if specified {@code y} is not within the
377          * range of the specified {@code points}.
378          */
379         private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
380                                                                    int startIdx,
381                                                                    int idxStep,
382                                                                    double y)
383             throws MathIllegalArgumentException {
384             if (idxStep == 0) {
385                 throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
386             }
387             for (int i = startIdx;
388                  idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
389                  i += idxStep) {
390                 final WeightedObservedPoint p1 = points[i];
391                 final WeightedObservedPoint p2 = points[i + idxStep];
392                 if (isBetween(y, p1.getY(), p2.getY())) {
393                     if (idxStep < 0) {
394                         return new WeightedObservedPoint[] { p2, p1 };
395                     } else {
396                         return new WeightedObservedPoint[] { p1, p2 };
397                     }
398                 }
399             }
400 
401             // Boundaries are replaced by dummy values because the raised
402             // exception is caught and the message never displayed.
403             // TODO: Exceptions should not be used for flow control.
404             throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
405                                                    y, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
406         }
407 
408         /**
409          * Determines whether a value is between two other values.
410          *
411          * @param value Value to test whether it is between {@code boundary1}
412          * and {@code boundary2}.
413          * @param boundary1 One end of the range.
414          * @param boundary2 Other end of the range.
415          * @return {@code true} if {@code value} is between {@code boundary1} and
416          * {@code boundary2} (inclusive), {@code false} otherwise.
417          */
418         private boolean isBetween(double value,
419                                   double boundary1,
420                                   double boundary2) {
421             return (value >= boundary1 && value <= boundary2) ||
422                 (value >= boundary2 && value <= boundary1);
423         }
424     }
425 }