View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode;
24  
25  import java.util.ArrayList;
26  import java.util.List;
27  
28  import org.hipparchus.CalculusFieldElement;
29  import org.hipparchus.exception.LocalizedCoreFormats;
30  import org.hipparchus.exception.MathIllegalArgumentException;
31  import org.hipparchus.exception.MathIllegalStateException;
32  import org.hipparchus.ode.sampling.FieldODEStepHandler;
33  import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
34  import org.hipparchus.util.FastMath;
35  
36  /**
37   * This class stores all information provided by an ODE integrator
38   * during the integration process and build a continuous model of the
39   * solution from this.
40   *
41   * <p>This class act as a step handler from the integrator point of
42   * view. It is called iteratively during the integration process and
43   * stores a copy of all steps information in a sorted collection for
44   * later use. Once the integration process is over, the user can use
45   * the {@link #getInterpolatedState(CalculusFieldElement) getInterpolatedState}
46   * method to retrieve this information at any time. It is important to wait
47   * for the integration to be over before attempting to call {@link
48   * #getInterpolatedState(CalculusFieldElement)} because some internal
49   * variables are set only once the last step has been handled.</p>
50   *
51   * <p>This is useful for example if the main loop of the user
52   * application should remain independent from the integration process
53   * or if one needs to mimic the behaviour of an analytical model
54   * despite a numerical model is used (i.e. one needs the ability to
55   * get the model value at any time or to navigate through the
56   * data).</p>
57   *
58   * <p>If problem modeling is done with several separate
59   * integration phases for contiguous intervals, the same
60   * FieldDenseOutputModel can be used as step handler for all
61   * integration phases as long as they are performed in order and in
62   * the same direction. As an example, one can extrapolate the
63   * trajectory of a satellite with one model (i.e. one set of
64   * differential equations) up to the beginning of a maneuver, use
65   * another more complex model including thrusters modeling and
66   * accurate attitude control during the maneuver, and revert to the
67   * first model after the end of the maneuver. If the same continuous
68   * output model handles the steps of all integration phases, the user
69   * do not need to bother when the maneuver begins or ends, he has all
70   * the data available in a transparent manner.</p>
71   *
72   * <p>One should be aware that the amount of data stored in a
73   * FieldDenseOutputModel instance can be important if the state vector
74   * is large, if the integration interval is long or if the steps are
75   * small (which can result from small tolerance settings in {@link
76   * org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive
77   * step size integrators}).</p>
78   *
79   * @see FieldODEStepHandler
80   * @see FieldODEStateInterpolator
81   * @param <T> the type of the field elements
82   */
83  
84  public class FieldDenseOutputModel<T extends CalculusFieldElement<T>>
85      implements FieldODEStepHandler<T> {
86  
87      /** Initial integration time. */
88      private T initialTime;
89  
90      /** Final integration time. */
91      private T finalTime;
92  
93      /** Integration direction indicator. */
94      private boolean forward;
95  
96      /** Current interpolator index. */
97      private int index;
98  
99      /** Steps table. */
100     private List<FieldODEStateInterpolator<T>> steps;
101 
102     /** Simple constructor.
103      * Build an empty continuous output model.
104      */
105     public FieldDenseOutputModel() {
106         steps       = new ArrayList<>();
107         initialTime = null;
108         finalTime   = null;
109         forward     = true;
110         index       = 0;
111     }
112 
113     /** Append another model at the end of the instance.
114      * @param model model to add at the end of the instance
115      * @exception MathIllegalArgumentException if the model to append is not
116      * compatible with the instance (dimension of the state vector,
117      * propagation direction, hole between the dates)
118      * @exception MathIllegalArgumentException if the dimensions of the states or
119      * the number of secondary states do not match
120      * @exception MathIllegalStateException if the number of functions evaluations is exceeded
121      * during step finalization
122      */
123     public void append(final FieldDenseOutputModel<T> model)
124         throws MathIllegalArgumentException, MathIllegalStateException {
125 
126         if (model.steps.isEmpty()) {
127             return;
128         }
129 
130         if (steps.isEmpty()) {
131             initialTime = model.initialTime;
132             forward     = model.forward;
133         } else {
134 
135             // safety checks
136             final FieldODEStateAndDerivative<T> s1 = steps.get(0).getPreviousState();
137             final FieldODEStateAndDerivative<T> s2 = model.steps.get(0).getPreviousState();
138             checkDimensionsEquality(s1.getPrimaryStateDimension(), s2.getPrimaryStateDimension());
139             checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
140             for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
141                 checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
142             }
143 
144             if (forward ^ model.forward) {
145                 throw new MathIllegalArgumentException(LocalizedODEFormats.PROPAGATION_DIRECTION_MISMATCH);
146             }
147 
148             final FieldODEStateInterpolator<T> lastInterpolator = steps.get(index);
149             final T current  = lastInterpolator.getCurrentState().getTime();
150             final T previous = lastInterpolator.getPreviousState().getTime();
151             final T step = current.subtract(previous);
152             final T gap = model.getInitialTime().subtract(current);
153             if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
154                 throw new MathIllegalArgumentException(LocalizedODEFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
155                                                        gap.norm());
156             }
157 
158         }
159 
160         steps.addAll(model.steps);
161 
162         index = steps.size() - 1;
163         finalTime = (steps.get(index)).getCurrentState().getTime();
164 
165     }
166 
167     /** Check dimensions equality.
168      * @param d1 first dimension
169      * @param d2 second dimansion
170      * @exception MathIllegalArgumentException if dimensions do not match
171      */
172     private void checkDimensionsEquality(final int d1, final int d2)
173         throws MathIllegalArgumentException {
174         if (d1 != d2) {
175             throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
176                                                    d2, d1);
177         }
178     }
179 
180     /** {@inheritDoc} */
181     @Override
182     public void init(final FieldODEStateAndDerivative<T> initialState, final T t) {
183         initialTime = initialState.getTime();
184         finalTime   = t;
185         forward     = true;
186         index       = 0;
187         steps.clear();
188     }
189 
190     /** {@inheritDoc} */
191     @Override
192     public void handleStep(final FieldODEStateInterpolator<T> interpolator) {
193 
194         if (steps.isEmpty()) {
195             initialTime = interpolator.getPreviousState().getTime();
196             forward     = interpolator.isForward();
197         }
198 
199         steps.add(interpolator);
200     }
201 
202     /** {@inheritDoc} */
203     @Override
204     public void finish(FieldODEStateAndDerivative<T> finalState) {
205         finalTime = finalState.getTime();
206         index     = steps.size() - 1;
207     }
208 
209     /**
210      * Get the initial integration time.
211      * @return initial integration time
212      */
213     public T getInitialTime() {
214         return initialTime;
215     }
216 
217     /**
218      * Get the final integration time.
219      * @return final integration time
220      */
221     public T getFinalTime() {
222         return finalTime;
223     }
224 
225     /**
226      * Get the state at interpolated time.
227      * @param time time of the interpolated point
228      * @return state at interpolated time
229      */
230     public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
231 
232         // initialize the search with the complete steps table
233         int iMin = 0;
234         final FieldODEStateInterpolator<T> sMin = steps.get(iMin);
235         T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5);
236 
237         int iMax = steps.size() - 1;
238         final FieldODEStateInterpolator<T> sMax = steps.get(iMax);
239         T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5);
240 
241         // handle points outside of the integration interval
242         // or in the first and last step
243         if (locatePoint(time, sMin) <= 0) {
244             index = iMin;
245             return sMin.getInterpolatedState(time);
246         }
247         if (locatePoint(time, sMax) >= 0) {
248             index = iMax;
249             return sMax.getInterpolatedState(time);
250         }
251 
252         // reduction of the table slice size
253         while (iMax - iMin > 5) {
254 
255             // use the last estimated index as the splitting index
256             final FieldODEStateInterpolator<T> si = steps.get(index);
257             final int location = locatePoint(time, si);
258             if (location < 0) {
259                 iMax = index;
260                 tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
261             } else if (location > 0) {
262                 iMin = index;
263                 tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
264             } else {
265                 // we have found the target step, no need to continue searching
266                 return si.getInterpolatedState(time);
267             }
268 
269             // compute a new estimate of the index in the reduced table slice
270             final int iMed = (iMin + iMax) / 2;
271             final FieldODEStateInterpolator<T> sMed = steps.get(iMed);
272             final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5);
273 
274             if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 ||
275                 tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
276                 // too close to the bounds, we estimate using a simple dichotomy
277                 index = iMed;
278             } else {
279                 // estimate the index using a reverse quadratic polynomial
280                 // (reverse means we have i = P(t), thus allowing to simply
281                 // compute index = P(time) rather than solving a quadratic equation)
282                 final T d12 = tMax.subtract(tMed);
283                 final T d23 = tMed.subtract(tMin);
284                 final T d13 = tMax.subtract(tMin);
285                 final T dt1 = time.subtract(tMax);
286                 final T dt2 = time.subtract(tMed);
287                 final T dt3 = time.subtract(tMin);
288                 final T iLagrange =           dt2.multiply(dt3).multiply(d23).multiply(iMax).
289                                      subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)).
290                                      add(     dt1.multiply(dt2).multiply(d12).multiply(iMin)).
291                                      divide(d12.multiply(d23).multiply(d13));
292                 index = (int) FastMath.rint(iLagrange.getReal());
293             }
294 
295             // force the next size reduction to be at least one tenth
296             final int low  = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
297             final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
298             if (index < low) {
299                 index = low;
300             } else if (index > high) {
301                 index = high;
302             }
303 
304         }
305 
306         // now the table slice is very small, we perform an iterative search
307         index = iMin;
308         while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
309             ++index;
310         }
311 
312         return steps.get(index).getInterpolatedState(time);
313 
314     }
315 
316     /** Compare a step interval and a double.
317      * @param time point to locate
318      * @param interval step interval
319      * @return -1 if the double is before the interval, 0 if it is in
320      * the interval, and +1 if it is after the interval, according to
321      * the interval direction
322      */
323     private int locatePoint(final T time, final FieldODEStateInterpolator<T> interval) {
324         if (forward) {
325             if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
326                 return -1;
327             } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
328                 return +1;
329             } else {
330                 return 0;
331             }
332         }
333         if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
334             return -1;
335         } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
336             return +1;
337         } else {
338             return 0;
339         }
340     }
341 
342 }