View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode.nonstiff;
24  
25  import org.hipparchus.Field;
26  import org.hipparchus.CalculusFieldElement;
27  import org.hipparchus.exception.MathIllegalArgumentException;
28  import org.hipparchus.linear.Array2DRowFieldMatrix;
29  import org.hipparchus.linear.FieldMatrix;
30  import org.hipparchus.ode.FieldEquationsMapper;
31  import org.hipparchus.ode.FieldODEStateAndDerivative;
32  import org.hipparchus.ode.nonstiff.interpolators.AdamsFieldStateInterpolator;
33  import org.hipparchus.util.FastMath;
34  
35  
36  /**
37   * This class implements explicit Adams-Bashforth integrators for Ordinary
38   * Differential Equations.
39   *
40   * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
41   * multistep ODE solvers. This implementation is a variation of the classical
42   * one: it uses adaptive stepsize to implement error control, whereas
43   * classical implementations are fixed step size. The value of state vector
44   * at step n+1 is a simple combination of the value at step n and of the
45   * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
46   * steps one wants to use for computing the next value, different formulas
47   * are available:</p>
48   * <ul>
49   *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
50   *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
51   *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
52   *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
53   *   <li>...</li>
54   * </ul>
55   *
56   * <p>A k-steps Adams-Bashforth method is of order k.</p>
57   *
58   * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.FieldODEIntegrator)
59   * starter integrator} to take several steps between the the last reset event, and the end
60   * of integration, otherwise an exception may be thrown during integration. The user can
61   * adjust the end date of integration, or the step size of the starter integrator to
62   * ensure a sufficient number of steps can be completed before the end of integration.
63   * </p>
64   *
65   * <p><strong>Implementation details</strong></p>
66   *
67   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
68   * \[
69   *   \left\{\begin{align}
70   *   s_1(n) &amp;= h y'_n \text{ for first derivative}\\
71   *   s_2(n) &amp;= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
72   *   s_3(n) &amp;= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
73   *   &amp;\cdots\\
74   *   s_k(n) &amp;= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
75   *   \end{align}\right.
76   * \]</p>
77   *
78   * <p>The definitions above use the classical representation with several previous first
79   * derivatives. Lets define
80   * \[
81   *   q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T
82   * \]
83   * (we omit the k index in the notation for clarity). With these definitions,
84   * Adams-Bashforth methods can be written:
85   * \[
86   *   \left\{\begin{align}
87   *   k = 1: &amp; y_{n+1} = y_n +               s_1(n) \\
88   *   k = 2: &amp; y_{n+1} = y_n + \frac{3}{2}   s_1(n) + [ \frac{-1}{2} ] q_n \\
89   *   k = 3: &amp; y_{n+1} = y_n + \frac{23}{12} s_1(n) + [ \frac{-16}{12} \frac{5}{12} ] q_n \\
90   *   k = 4: &amp; y_{n+1} = y_n + \frac{55}{24} s_1(n) + [ \frac{-59}{24} \frac{37}{24} \frac{-9}{24} ] q_n \\
91   *          &amp; \cdots
92   *   \end{align}\right.
93   * \]
94   *
95   * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
96   * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
97   * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
98   * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
99   * \[
100  * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
101  * \]
102  * (here again we omit the k index in the notation for clarity)
103  * </p>
104  *
105  * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
106  * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
107  * for degree k polynomials.
108  * \[
109  * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n)
110  * \]
111  * The previous formula can be used with several values for i to compute the transform between
112  * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
113  * and q<sub>n</sub> resulting from the Taylor series formulas above is:
114  * \[
115  * q_n = s_1(n) u + P r_n
116  * \]
117  * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
118  * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being
119  * the column number starting from 1:
120  * \[
121  *   P=\begin{bmatrix}
122  *   -2  &amp;  3 &amp;   -4 &amp;    5 &amp; \ldots \\
123  *   -4  &amp; 12 &amp;  -32 &amp;   80 &amp; \ldots \\
124  *   -6  &amp; 27 &amp; -108 &amp;  405 &amp; \ldots \\
125  *   -8  &amp; 48 &amp; -256 &amp; 1280 &amp; \ldots \\
126  *       &amp;    &amp;  \ldots\\
127  *    \end{bmatrix}
128  * \]
129  *
130  * <p>Using the Nordsieck vector has several advantages:</p>
131  * <ul>
132  *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
133  *   Taylor series formulas,</li>
134  *   <li>it simplifies step changes that occur when discrete events that truncate
135  *   the step are triggered,</li>
136  *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
137  * </ul>
138  *
139  * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
140  * <ul>
141  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
142  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
143  *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
144  * </ul>
145  * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p>
146  * <pre>
147  *        [ 0 0   ...  0 0 | 0 ]
148  *        [ ---------------+---]
149  *        [ 1 0   ...  0 0 | 0 ]
150  *    A = [ 0 1   ...  0 0 | 0 ]
151  *        [       ...      | 0 ]
152  *        [ 0 0   ...  1 0 | 0 ]
153  *        [ 0 0   ...  0 1 | 0 ]
154  * </pre>
155  *
156  * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
157  * they only depend on k and therefore are precomputed once for all.</p>
158  *
159  * @param <T> the type of the field elements
160  */
161 public class AdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>> extends AdamsFieldIntegrator<T> {
162 
163     /** Name of integration scheme. */
164     public static final String METHOD_NAME = AdamsBashforthIntegrator.METHOD_NAME;
165 
166     /**
167      * Build an Adams-Bashforth integrator with the given order and step control parameters.
168      * @param field field to which the time and state vector elements belong
169      * @param nSteps number of steps of the method excluding the one being computed
170      * @param minStep minimal step (sign is irrelevant, regardless of
171      * integration direction, forward or backward), the last step can
172      * be smaller than this
173      * @param maxStep maximal step (sign is irrelevant, regardless of
174      * integration direction, forward or backward), the last step can
175      * be smaller than this
176      * @param scalAbsoluteTolerance allowed absolute error
177      * @param scalRelativeTolerance allowed relative error
178      * @exception MathIllegalArgumentException if order is 1 or less
179      */
180     public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
181                                          final double minStep, final double maxStep,
182                                          final double scalAbsoluteTolerance,
183                                          final double scalRelativeTolerance)
184         throws MathIllegalArgumentException {
185         super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
186               scalAbsoluteTolerance, scalRelativeTolerance);
187     }
188 
189     /**
190      * Build an Adams-Bashforth integrator with the given order and step control parameters.
191      * @param field field to which the time and state vector elements belong
192      * @param nSteps number of steps of the method excluding the one being computed
193      * @param minStep minimal step (sign is irrelevant, regardless of
194      * integration direction, forward or backward), the last step can
195      * be smaller than this
196      * @param maxStep maximal step (sign is irrelevant, regardless of
197      * integration direction, forward or backward), the last step can
198      * be smaller than this
199      * @param vecAbsoluteTolerance allowed absolute error
200      * @param vecRelativeTolerance allowed relative error
201      * @exception IllegalArgumentException if order is 1 or less
202      */
203     public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
204                                          final double minStep, final double maxStep,
205                                          final double[] vecAbsoluteTolerance,
206                                          final double[] vecRelativeTolerance)
207         throws IllegalArgumentException {
208         super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
209               vecAbsoluteTolerance, vecRelativeTolerance);
210     }
211 
212     /** {@inheritDoc} */
213     @Override
214     protected double errorEstimation(final T[] previousState, final T predictedTime,
215                                      final T[] predictedState, final T[] predictedScaled,
216                                      final FieldMatrix<T> predictedNordsieck) {
217 
218         final StepsizeHelper helper = getStepSizeHelper();
219         double error = 0;
220         for (int i = 0; i < helper.getMainSetDimension(); ++i) {
221             final double tol = helper.getTolerance(i, FastMath.abs(predictedState[i].getReal()));
222 
223             // apply Taylor formula from high order to low order,
224             // for the sake of numerical accuracy
225             double variation = 0;
226             int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1;
227             for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
228                 variation += sign * predictedNordsieck.getEntry(k, i).getReal();
229                 sign       = -sign;
230             }
231             variation -= predictedScaled[i].getReal();
232 
233             final double ratio  = (predictedState[i].getReal() - previousState[i].getReal() + variation) / tol;
234             error              += ratio * ratio;
235 
236         }
237 
238         return FastMath.sqrt(error / helper.getMainSetDimension());
239 
240     }
241 
242     /** {@inheritDoc} */
243     @Override
244     protected AdamsFieldStateInterpolator<T> finalizeStep(final T stepSize, final T[] predictedY,
245                                                           final T[] predictedScaled, final Array2DRowFieldMatrix<T> predictedNordsieck,
246                                                           final boolean isForward,
247                                                           final FieldODEStateAndDerivative<T> globalPreviousState,
248                                                           final FieldODEStateAndDerivative<T> globalCurrentState,
249                                                           final FieldEquationsMapper<T> equationsMapper) {
250         return new AdamsFieldStateInterpolator<>(getStepSize(), globalCurrentState,
251                                                  predictedScaled, predictedNordsieck, isForward,
252                                                  getStepStart(), globalCurrentState, equationsMapper);
253     }
254 
255 }