1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.ode.nonstiff; 24 25 import org.hipparchus.Field; 26 import org.hipparchus.CalculusFieldElement; 27 import org.hipparchus.exception.MathIllegalArgumentException; 28 import org.hipparchus.linear.Array2DRowFieldMatrix; 29 import org.hipparchus.linear.FieldMatrix; 30 import org.hipparchus.ode.FieldEquationsMapper; 31 import org.hipparchus.ode.FieldODEStateAndDerivative; 32 import org.hipparchus.ode.nonstiff.interpolators.AdamsFieldStateInterpolator; 33 import org.hipparchus.util.FastMath; 34 35 36 /** 37 * This class implements explicit Adams-Bashforth integrators for Ordinary 38 * Differential Equations. 39 * 40 * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit 41 * multistep ODE solvers. This implementation is a variation of the classical 42 * one: it uses adaptive stepsize to implement error control, whereas 43 * classical implementations are fixed step size. The value of state vector 44 * at step n+1 is a simple combination of the value at step n and of the 45 * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous 46 * steps one wants to use for computing the next value, different formulas 47 * are available:</p> 48 * <ul> 49 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li> 50 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li> 51 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li> 52 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li> 53 * <li>...</li> 54 * </ul> 55 * 56 * <p>A k-steps Adams-Bashforth method is of order k.</p> 57 * 58 * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.FieldODEIntegrator) 59 * starter integrator} to take several steps between the the last reset event, and the end 60 * of integration, otherwise an exception may be thrown during integration. The user can 61 * adjust the end date of integration, or the step size of the starter integrator to 62 * ensure a sufficient number of steps can be completed before the end of integration. 63 * </p> 64 * 65 * <p><strong>Implementation details</strong></p> 66 * 67 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 68 * \[ 69 * \left\{\begin{align} 70 * s_1(n) &= h y'_n \text{ for first derivative}\\ 71 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\ 72 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\ 73 * &\cdots\\ 74 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative} 75 * \end{align}\right. 76 * \]</p> 77 * 78 * <p>The definitions above use the classical representation with several previous first 79 * derivatives. Lets define 80 * \[ 81 * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T 82 * \] 83 * (we omit the k index in the notation for clarity). With these definitions, 84 * Adams-Bashforth methods can be written: 85 * \[ 86 * \left\{\begin{align} 87 * k = 1: & y_{n+1} = y_n + s_1(n) \\ 88 * k = 2: & y_{n+1} = y_n + \frac{3}{2} s_1(n) + [ \frac{-1}{2} ] q_n \\ 89 * k = 3: & y_{n+1} = y_n + \frac{23}{12} s_1(n) + [ \frac{-16}{12} \frac{5}{12} ] q_n \\ 90 * k = 4: & y_{n+1} = y_n + \frac{55}{24} s_1(n) + [ \frac{-59}{24} \frac{37}{24} \frac{-9}{24} ] q_n \\ 91 * & \cdots 92 * \end{align}\right. 93 * \] 94 * 95 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>, 96 * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with 97 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n) 98 * and r<sub>n</sub>) where r<sub>n</sub> is defined as: 99 * \[ 100 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T 101 * \] 102 * (here again we omit the k index in the notation for clarity) 103 * </p> 104 * 105 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 106 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 107 * for degree k polynomials. 108 * \[ 109 * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n) 110 * \] 111 * The previous formula can be used with several values for i to compute the transform between 112 * classical representation and Nordsieck vector. The transform between r<sub>n</sub> 113 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 114 * \[ 115 * q_n = s_1(n) u + P r_n 116 * \] 117 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 118 * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being 119 * the column number starting from 1: 120 * \[ 121 * P=\begin{bmatrix} 122 * -2 & 3 & -4 & 5 & \ldots \\ 123 * -4 & 12 & -32 & 80 & \ldots \\ 124 * -6 & 27 & -108 & 405 & \ldots \\ 125 * -8 & 48 & -256 & 1280 & \ldots \\ 126 * & & \ldots\\ 127 * \end{bmatrix} 128 * \] 129 * 130 * <p>Using the Nordsieck vector has several advantages:</p> 131 * <ul> 132 * <li>it greatly simplifies step interpolation as the interpolator mainly applies 133 * Taylor series formulas,</li> 134 * <li>it simplifies step changes that occur when discrete events that truncate 135 * the step are triggered,</li> 136 * <li>it allows to extend the methods in order to support adaptive stepsize.</li> 137 * </ul> 138 * 139 * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows: 140 * <ul> 141 * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 142 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 143 * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 144 * </ul> 145 * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p> 146 * <pre> 147 * [ 0 0 ... 0 0 | 0 ] 148 * [ ---------------+---] 149 * [ 1 0 ... 0 0 | 0 ] 150 * A = [ 0 1 ... 0 0 | 0 ] 151 * [ ... | 0 ] 152 * [ 0 0 ... 1 0 | 0 ] 153 * [ 0 0 ... 0 1 | 0 ] 154 * </pre> 155 * 156 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state, 157 * they only depend on k and therefore are precomputed once for all.</p> 158 * 159 * @param <T> the type of the field elements 160 */ 161 public class AdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>> extends AdamsFieldIntegrator<T> { 162 163 /** Name of integration scheme. */ 164 public static final String METHOD_NAME = AdamsBashforthIntegrator.METHOD_NAME; 165 166 /** 167 * Build an Adams-Bashforth integrator with the given order and step control parameters. 168 * @param field field to which the time and state vector elements belong 169 * @param nSteps number of steps of the method excluding the one being computed 170 * @param minStep minimal step (sign is irrelevant, regardless of 171 * integration direction, forward or backward), the last step can 172 * be smaller than this 173 * @param maxStep maximal step (sign is irrelevant, regardless of 174 * integration direction, forward or backward), the last step can 175 * be smaller than this 176 * @param scalAbsoluteTolerance allowed absolute error 177 * @param scalRelativeTolerance allowed relative error 178 * @exception MathIllegalArgumentException if order is 1 or less 179 */ 180 public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps, 181 final double minStep, final double maxStep, 182 final double scalAbsoluteTolerance, 183 final double scalRelativeTolerance) 184 throws MathIllegalArgumentException { 185 super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep, 186 scalAbsoluteTolerance, scalRelativeTolerance); 187 } 188 189 /** 190 * Build an Adams-Bashforth integrator with the given order and step control parameters. 191 * @param field field to which the time and state vector elements belong 192 * @param nSteps number of steps of the method excluding the one being computed 193 * @param minStep minimal step (sign is irrelevant, regardless of 194 * integration direction, forward or backward), the last step can 195 * be smaller than this 196 * @param maxStep maximal step (sign is irrelevant, regardless of 197 * integration direction, forward or backward), the last step can 198 * be smaller than this 199 * @param vecAbsoluteTolerance allowed absolute error 200 * @param vecRelativeTolerance allowed relative error 201 * @exception IllegalArgumentException if order is 1 or less 202 */ 203 public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps, 204 final double minStep, final double maxStep, 205 final double[] vecAbsoluteTolerance, 206 final double[] vecRelativeTolerance) 207 throws IllegalArgumentException { 208 super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep, 209 vecAbsoluteTolerance, vecRelativeTolerance); 210 } 211 212 /** {@inheritDoc} */ 213 @Override 214 protected double errorEstimation(final T[] previousState, final T predictedTime, 215 final T[] predictedState, final T[] predictedScaled, 216 final FieldMatrix<T> predictedNordsieck) { 217 218 final StepsizeHelper helper = getStepSizeHelper(); 219 double error = 0; 220 for (int i = 0; i < helper.getMainSetDimension(); ++i) { 221 final double tol = helper.getTolerance(i, FastMath.abs(predictedState[i].getReal())); 222 223 // apply Taylor formula from high order to low order, 224 // for the sake of numerical accuracy 225 double variation = 0; 226 int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1; 227 for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) { 228 variation += sign * predictedNordsieck.getEntry(k, i).getReal(); 229 sign = -sign; 230 } 231 variation -= predictedScaled[i].getReal(); 232 233 final double ratio = (predictedState[i].getReal() - previousState[i].getReal() + variation) / tol; 234 error += ratio * ratio; 235 236 } 237 238 return FastMath.sqrt(error / helper.getMainSetDimension()); 239 240 } 241 242 /** {@inheritDoc} */ 243 @Override 244 protected AdamsFieldStateInterpolator<T> finalizeStep(final T stepSize, final T[] predictedY, 245 final T[] predictedScaled, final Array2DRowFieldMatrix<T> predictedNordsieck, 246 final boolean isForward, 247 final FieldODEStateAndDerivative<T> globalPreviousState, 248 final FieldODEStateAndDerivative<T> globalCurrentState, 249 final FieldEquationsMapper<T> equationsMapper) { 250 return new AdamsFieldStateInterpolator<>(getStepSize(), globalCurrentState, 251 predictedScaled, predictedNordsieck, isForward, 252 getStepStart(), globalCurrentState, equationsMapper); 253 } 254 255 }