View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.hipparchus.ode.nonstiff;
19  
20  import org.hipparchus.exception.MathIllegalArgumentException;
21  import org.hipparchus.linear.Array2DRowRealMatrix;
22  import org.hipparchus.linear.RealMatrix;
23  import org.hipparchus.ode.EquationsMapper;
24  import org.hipparchus.ode.ODEStateAndDerivative;
25  import org.hipparchus.ode.nonstiff.interpolators.AdamsStateInterpolator;
26  import org.hipparchus.util.FastMath;
27  
28  
29  /**
30   * This class implements explicit Adams-Bashforth integrators for Ordinary
31   * Differential Equations.
32   *
33   * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
34   * multistep ODE solvers. This implementation is a variation of the classical
35   * one: it uses adaptive stepsize to implement error control, whereas
36   * classical implementations are fixed step size. The value of state vector
37   * at step n+1 is a simple combination of the value at step n and of the
38   * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
39   * steps one wants to use for computing the next value, different formulas
40   * are available:</p>
41   * <ul>
42   *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
43   *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
44   *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
45   *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
46   *   <li>...</li>
47   * </ul>
48   *
49   * <p>A k-steps Adams-Bashforth method is of order k.</p>
50   *
51   * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.ODEIntegrator)
52   * starter integrator} to take several steps between the the last reset event, and the end
53   * of integration, otherwise an exception may be thrown during integration. The user can
54   * adjust the end date of integration, or the step size of the starter integrator to
55   * ensure a sufficient number of steps can be completed before the end of integration.
56   * </p>
57   *
58   * <p><strong>Implementation details</strong></p>
59   *
60   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
61   * \[
62   *   \left\{\begin{align}
63   *   s_1(n) &amp;= h y'_n \text{ for first derivative}\\
64   *   s_2(n) &amp;= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
65   *   s_3(n) &amp;= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
66   *   &amp;\cdots\\
67   *   s_k(n) &amp;= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
68   *   \end{align}\right.
69   * \]</p>
70   *
71   * <p>The definitions above use the classical representation with several previous first
72   * derivatives. Lets define
73   * \[
74   *   q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T
75   * \]
76   * (we omit the k index in the notation for clarity). With these definitions,
77   * Adams-Bashforth methods can be written:</p>
78   * \[
79   *   \left\{\begin{align}
80   *   k = 1: &amp; y_{n+1} = y_n +               s_1(n) \\
81   *   k = 2: &amp; y_{n+1} = y_n + \frac{3}{2}   s_1(n) + [ \frac{-1}{2} ] q_n \\
82   *   k = 3: &amp; y_{n+1} = y_n + \frac{23}{12} s_1(n) + [ \frac{-16}{12} \frac{5}{12} ] q_n \\
83   *   k = 4: &amp; y_{n+1} = y_n + \frac{55}{24} s_1(n) + [ \frac{-59}{24} \frac{37}{24} \frac{-9}{24} ] q_n \\
84   *          &amp; \cdots
85   *   \end{align}\right.
86   * \]
87   *
88   * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
89   * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
90   * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
91   * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
92   * \[
93   * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
94   * \]
95   * (here again we omit the k index in the notation for clarity)
96   * </p>
97   *
98   * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
99   * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
100  * for degree k polynomials.
101  * \[
102  * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n)
103  * \]
104  * The previous formula can be used with several values for i to compute the transform between
105  * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
106  * and q<sub>n</sub> resulting from the Taylor series formulas above is:
107  * \[
108  * q_n = s_1(n) u + P r_n
109  * \]
110  * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
111  * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being
112  * the column number starting from 1:
113  * \[
114  *   P=\begin{bmatrix}
115  *   -2  &amp;  3 &amp;   -4 &amp;    5 &amp; \ldots \\
116  *   -4  &amp; 12 &amp;  -32 &amp;   80 &amp; \ldots \\
117  *   -6  &amp; 27 &amp; -108 &amp;  405 &amp; \ldots \\
118  *   -8  &amp; 48 &amp; -256 &amp; 1280 &amp; \ldots \\
119  *       &amp;    &amp;  \ldots\\
120  *    \end{bmatrix}
121  * \]
122  * </p>
123  *
124  * <p>Using the Nordsieck vector has several advantages:</p>
125  * <ul>
126  *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
127  *   Taylor series formulas,</li>
128  *   <li>it simplifies step changes that occur when discrete events that truncate
129  *   the step are triggered,</li>
130  *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
131  * </ul>
132  *
133  * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
134  * <ul>
135  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
136  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
137  *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
138  * </ul>
139  * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p>
140  * <pre>
141  *        [ 0 0   ...  0 0 | 0 ]
142  *        [ ---------------+---]
143  *        [ 1 0   ...  0 0 | 0 ]
144  *    A = [ 0 1   ...  0 0 | 0 ]
145  *        [       ...      | 0 ]
146  *        [ 0 0   ...  1 0 | 0 ]
147  *        [ 0 0   ...  0 1 | 0 ]
148  * </pre>
149  *
150  * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
151  * they only depend on k and therefore are precomputed once for all.</p>
152  *
153  */
154 public class AdamsBashforthIntegrator extends AdamsIntegrator {
155 
156     /** Name of integration scheme. */
157     public static final String METHOD_NAME = "Adams-Bashforth";
158 
159     /**
160      * Build an Adams-Bashforth integrator with the given order and step control parameters.
161      * @param nSteps number of steps of the method excluding the one being computed
162      * @param minStep minimal step (sign is irrelevant, regardless of
163      * integration direction, forward or backward), the last step can
164      * be smaller than this
165      * @param maxStep maximal step (sign is irrelevant, regardless of
166      * integration direction, forward or backward), the last step can
167      * be smaller than this
168      * @param scalAbsoluteTolerance allowed absolute error
169      * @param scalRelativeTolerance allowed relative error
170      * @exception MathIllegalArgumentException if order is 1 or less
171      */
172     public AdamsBashforthIntegrator(final int nSteps,
173                                     final double minStep, final double maxStep,
174                                     final double scalAbsoluteTolerance,
175                                     final double scalRelativeTolerance)
176         throws MathIllegalArgumentException {
177         super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
178               scalAbsoluteTolerance, scalRelativeTolerance);
179     }
180 
181     /**
182      * Build an Adams-Bashforth integrator with the given order and step control parameters.
183      * @param nSteps number of steps of the method excluding the one being computed
184      * @param minStep minimal step (sign is irrelevant, regardless of
185      * integration direction, forward or backward), the last step can
186      * be smaller than this
187      * @param maxStep maximal step (sign is irrelevant, regardless of
188      * integration direction, forward or backward), the last step can
189      * be smaller than this
190      * @param vecAbsoluteTolerance allowed absolute error
191      * @param vecRelativeTolerance allowed relative error
192      * @exception IllegalArgumentException if order is 1 or less
193      */
194     public AdamsBashforthIntegrator(final int nSteps,
195                                     final double minStep, final double maxStep,
196                                     final double[] vecAbsoluteTolerance,
197                                     final double[] vecRelativeTolerance)
198         throws IllegalArgumentException {
199         super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
200               vecAbsoluteTolerance, vecRelativeTolerance);
201     }
202 
203     /** {@inheritDoc} */
204     @Override
205     protected double errorEstimation(final double[] previousState, final double predictedTime,
206                                      final double[] predictedState,
207                                      final double[] predictedScaled,
208                                      final RealMatrix predictedNordsieck) {
209 
210         final StepsizeHelper helper = getStepSizeHelper();
211         double error = 0;
212         for (int i = 0; i < helper.getMainSetDimension(); ++i) {
213             final double tol = helper.getTolerance(i, FastMath.abs(predictedState[i]));
214 
215             // apply Taylor formula from high order to low order,
216             // for the sake of numerical accuracy
217             double variation = 0;
218             int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1;
219             for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
220                 variation += sign * predictedNordsieck.getEntry(k, i);
221                 sign       = -sign;
222             }
223             variation -= predictedScaled[i];
224 
225             final double ratio  = (predictedState[i] - previousState[i] + variation) / tol;
226             error              += ratio * ratio;
227 
228         }
229 
230         return FastMath.sqrt(error / helper.getMainSetDimension());
231 
232     }
233 
234     /** {@inheritDoc} */
235     @Override
236     protected AdamsStateInterpolator finalizeStep(final double stepSize, final double[] predictedState,
237                                                   final double[] predictedScaled, final Array2DRowRealMatrix predictedNordsieck,
238                                                   final boolean isForward,
239                                                   final ODEStateAndDerivative globalPreviousState,
240                                                   final ODEStateAndDerivative globalCurrentState,
241                                                   final EquationsMapper equationsMapper) {
242         return new AdamsStateInterpolator(getStepSize(), globalCurrentState,
243                                           predictedScaled, predictedNordsieck, isForward,
244                                           getStepStart(), globalCurrentState, equationsMapper);
245     }
246 
247 }