1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.ode.nonstiff; 24 25 import java.util.Arrays; 26 27 import org.hipparchus.Field; 28 import org.hipparchus.CalculusFieldElement; 29 import org.hipparchus.exception.MathIllegalArgumentException; 30 import org.hipparchus.exception.MathIllegalStateException; 31 import org.hipparchus.linear.Array2DRowFieldMatrix; 32 import org.hipparchus.linear.FieldMatrix; 33 import org.hipparchus.linear.FieldMatrixPreservingVisitor; 34 import org.hipparchus.ode.FieldEquationsMapper; 35 import org.hipparchus.ode.FieldODEStateAndDerivative; 36 import org.hipparchus.ode.LocalizedODEFormats; 37 import org.hipparchus.ode.nonstiff.interpolators.AdamsFieldStateInterpolator; 38 import org.hipparchus.util.MathArrays; 39 import org.hipparchus.util.MathUtils; 40 41 42 /** 43 * This class implements implicit Adams-Moulton integrators for Ordinary 44 * Differential Equations. 45 * 46 * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit 47 * multistep ODE solvers. This implementation is a variation of the classical 48 * one: it uses adaptive stepsize to implement error control, whereas 49 * classical implementations are fixed step size. The value of state vector 50 * at step n+1 is a simple combination of the value at step n and of the 51 * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to 52 * compute y<sub>n+1</sub>, another method must be used to compute a first 53 * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute 54 * a final estimate of y<sub>n+1</sub> using the following formulas. Depending 55 * on the number k of previous steps one wants to use for computing the next 56 * value, different formulas are available for the final estimate:</p> 57 * <ul> 58 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li> 59 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li> 60 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li> 61 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li> 62 * <li>...</li> 63 * </ul> 64 * 65 * <p>A k-steps Adams-Moulton method is of order k+1.</p> 66 * 67 * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.FieldODEIntegrator) 68 * starter integrator} to take several steps between the the last reset event, and the end 69 * of integration, otherwise an exception may be thrown during integration. The user can 70 * adjust the end date of integration, or the step size of the starter integrator to 71 * ensure a sufficient number of steps can be completed before the end of integration. 72 * </p> 73 * 74 * <p><strong>Implementation details</strong></p> 75 * 76 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 77 * \[ 78 * \left\{\begin{align} 79 * s_1(n) &= h y'_n \text{ for first derivative}\\ 80 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\ 81 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\ 82 * &\cdots\\ 83 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative} 84 * \end{align}\right. 85 * \]</p> 86 * 87 * <p>The definitions above use the classical representation with several previous first 88 * derivatives. Lets define 89 * \[ 90 * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T 91 * \] 92 * (we omit the k index in the notation for clarity). With these definitions, 93 * Adams-Moulton methods can be written:</p> 94 * <ul> 95 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li> 96 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li> 97 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li> 98 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li> 99 * <li>...</li> 100 * </ul> 101 * 102 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>, 103 * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with 104 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n) 105 * and r<sub>n</sub>) where r<sub>n</sub> is defined as: 106 * \[ 107 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T 108 * \] 109 * (here again we omit the k index in the notation for clarity) 110 * </p> 111 * 112 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 113 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 114 * for degree k polynomials. 115 * \[ 116 * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n) 117 * \] 118 * The previous formula can be used with several values for i to compute the transform between 119 * classical representation and Nordsieck vector. The transform between r<sub>n</sub> 120 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 121 * \[ 122 * q_n = s_1(n) u + P r_n 123 * \] 124 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 125 * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being 126 * the column number starting from 1: 127 * \[ 128 * P=\begin{bmatrix} 129 * -2 & 3 & -4 & 5 & \ldots \\ 130 * -4 & 12 & -32 & 80 & \ldots \\ 131 * -6 & 27 & -108 & 405 & \ldots \\ 132 * -8 & 48 & -256 & 1280 & \ldots \\ 133 * & & \ldots\\ 134 * \end{bmatrix} 135 * \] 136 * 137 * <p>Using the Nordsieck vector has several advantages:</p> 138 * <ul> 139 * <li>it greatly simplifies step interpolation as the interpolator mainly applies 140 * Taylor series formulas,</li> 141 * <li>it simplifies step changes that occur when discrete events that truncate 142 * the step are triggered,</li> 143 * <li>it allows to extend the methods in order to support adaptive stepsize.</li> 144 * </ul> 145 * 146 * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step 147 * n as follows: 148 * <ul> 149 * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 150 * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li> 151 * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 152 * </ul> 153 * where A is a rows shifting matrix (the lower left part is an identity matrix): 154 * <pre> 155 * [ 0 0 ... 0 0 | 0 ] 156 * [ ---------------+---] 157 * [ 1 0 ... 0 0 | 0 ] 158 * A = [ 0 1 ... 0 0 | 0 ] 159 * [ ... | 0 ] 160 * [ 0 0 ... 1 0 | 0 ] 161 * [ 0 0 ... 0 1 | 0 ] 162 * </pre> 163 * From this predicted vector, the corrected vector is computed as follows: 164 * <ul> 165 * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li> 166 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 167 * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li> 168 * </ul> 169 * <p>where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the 170 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub> 171 * represent the corrected states.</p> 172 * 173 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state, 174 * they only depend on k and therefore are precomputed once for all.</p> 175 * 176 * @param <T> the type of the field elements 177 */ 178 public class AdamsMoultonFieldIntegrator<T extends CalculusFieldElement<T>> extends AdamsFieldIntegrator<T> { 179 180 /** Name of integration scheme. */ 181 public static final String METHOD_NAME = AdamsMoultonIntegrator.METHOD_NAME; 182 183 /** 184 * Build an Adams-Moulton integrator with the given order and error control parameters. 185 * @param field field to which the time and state vector elements belong 186 * @param nSteps number of steps of the method excluding the one being computed 187 * @param minStep minimal step (sign is irrelevant, regardless of 188 * integration direction, forward or backward), the last step can 189 * be smaller than this 190 * @param maxStep maximal step (sign is irrelevant, regardless of 191 * integration direction, forward or backward), the last step can 192 * be smaller than this 193 * @param scalAbsoluteTolerance allowed absolute error 194 * @param scalRelativeTolerance allowed relative error 195 * @exception MathIllegalArgumentException if order is 1 or less 196 */ 197 public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps, 198 final double minStep, final double maxStep, 199 final double scalAbsoluteTolerance, 200 final double scalRelativeTolerance) 201 throws MathIllegalArgumentException { 202 super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, 203 scalAbsoluteTolerance, scalRelativeTolerance); 204 } 205 206 /** 207 * Build an Adams-Moulton integrator with the given order and error control parameters. 208 * @param field field to which the time and state vector elements belong 209 * @param nSteps number of steps of the method excluding the one being computed 210 * @param minStep minimal step (sign is irrelevant, regardless of 211 * integration direction, forward or backward), the last step can 212 * be smaller than this 213 * @param maxStep maximal step (sign is irrelevant, regardless of 214 * integration direction, forward or backward), the last step can 215 * be smaller than this 216 * @param vecAbsoluteTolerance allowed absolute error 217 * @param vecRelativeTolerance allowed relative error 218 * @exception IllegalArgumentException if order is 1 or less 219 */ 220 public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps, 221 final double minStep, final double maxStep, 222 final double[] vecAbsoluteTolerance, 223 final double[] vecRelativeTolerance) 224 throws IllegalArgumentException { 225 super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, 226 vecAbsoluteTolerance, vecRelativeTolerance); 227 } 228 229 /** {@inheritDoc} */ 230 @Override 231 protected double errorEstimation(final T[] previousState, final T predictedTime, 232 final T[] predictedState, final T[] predictedScaled, 233 final FieldMatrix<T> predictedNordsieck) { 234 final double error = predictedNordsieck.walkInOptimizedOrder(new Corrector(previousState, predictedScaled, predictedState)).getReal(); 235 if (Double.isNaN(error)) { 236 throw new MathIllegalStateException(LocalizedODEFormats.NAN_APPEARING_DURING_INTEGRATION, 237 predictedTime.getReal()); 238 } 239 return error; 240 } 241 242 /** {@inheritDoc} */ 243 @Override 244 protected AdamsFieldStateInterpolator<T> finalizeStep(final T stepSize, final T[] predictedY, 245 final T[] predictedScaled, final Array2DRowFieldMatrix<T> predictedNordsieck, 246 final boolean isForward, 247 final FieldODEStateAndDerivative<T> globalPreviousState, 248 final FieldODEStateAndDerivative<T> globalCurrentState, 249 final FieldEquationsMapper<T> equationsMapper) { 250 251 final T[] correctedYDot = computeDerivatives(globalCurrentState.getTime(), predictedY); 252 253 // update Nordsieck vector 254 final T[] correctedScaled = MathArrays.buildArray(getField(), predictedY.length); 255 for (int j = 0; j < correctedScaled.length; ++j) { 256 correctedScaled[j] = getStepSize().multiply(correctedYDot[j]); 257 } 258 updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck); 259 260 final FieldODEStateAndDerivative<T> updatedStepEnd = 261 equationsMapper.mapStateAndDerivative(globalCurrentState.getTime(), predictedY, correctedYDot); 262 return new AdamsFieldStateInterpolator<>(getStepSize(), updatedStepEnd, 263 correctedScaled, predictedNordsieck, isForward, 264 getStepStart(), updatedStepEnd, 265 equationsMapper); 266 267 } 268 269 /** Corrector for current state in Adams-Moulton method. 270 * <p> 271 * This visitor implements the Taylor series formula: 272 * <pre> 273 * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub> 274 * </pre> 275 * </p> 276 */ 277 private class Corrector implements FieldMatrixPreservingVisitor<T> { 278 279 /** Previous state. */ 280 private final T[] previous; 281 282 /** Current scaled first derivative. */ 283 private final T[] scaled; 284 285 /** Current state before correction. */ 286 private final T[] before; 287 288 /** Current state after correction. */ 289 private final T[] after; 290 291 /** Simple constructor. 292 * <p> 293 * All arrays will be stored by reference to caller arrays. 294 * </p> 295 * @param previous previous state 296 * @param scaled current scaled first derivative 297 * @param state state to correct (will be overwritten after visit) 298 */ 299 Corrector(final T[] previous, final T[] scaled, final T[] state) { 300 this.previous = previous; // NOPMD - array reference storage is intentional and documented here 301 this.scaled = scaled; // NOPMD - array reference storage is intentional and documented here 302 this.after = state; // NOPMD - array reference storage is intentional and documented here 303 this.before = state.clone(); 304 } 305 306 /** {@inheritDoc} */ 307 @Override 308 public void start(int rows, int columns, 309 int startRow, int endRow, int startColumn, int endColumn) { 310 Arrays.fill(after, getField().getZero()); 311 } 312 313 /** {@inheritDoc} */ 314 @Override 315 public void visit(int row, int column, T value) { 316 if ((row & 0x1) == 0) { 317 after[column] = after[column].subtract(value); 318 } else { 319 after[column] = after[column].add(value); 320 } 321 } 322 323 /** 324 * End visiting the Nordsieck vector. 325 * <p>The correction is used to control stepsize. So its amplitude is 326 * considered to be an error, which must be normalized according to 327 * error control settings. If the normalized value is greater than 1, 328 * the correction was too large and the step must be rejected.</p> 329 * @return the normalized correction, if greater than 1, the step 330 * must be rejected 331 */ 332 @Override 333 public T end() { 334 335 final StepsizeHelper helper = getStepSizeHelper(); 336 T error = getField().getZero(); 337 for (int i = 0; i < after.length; ++i) { 338 after[i] = after[i].add(previous[i].add(scaled[i])); 339 if (i < helper.getMainSetDimension()) { 340 final T tol = helper.getTolerance(i, MathUtils.max(previous[i].abs(), after[i].abs())); 341 final T ratio = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol 342 error = error.add(ratio.multiply(ratio)); 343 } 344 } 345 346 return error.divide(helper.getMainSetDimension()).sqrt(); 347 348 } 349 } 350 351 }