View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode.nonstiff;
24  
25  import org.hipparchus.CalculusFieldElement;
26  import org.hipparchus.Field;
27  import org.hipparchus.ode.FieldEquationsMapper;
28  import org.hipparchus.ode.FieldODEStateAndDerivative;
29  import org.hipparchus.ode.nonstiff.interpolators.EulerFieldStateInterpolator;
30  import org.hipparchus.util.MathArrays;
31  
32  /**
33   * This class implements a simple Euler integrator for Ordinary
34   * Differential Equations.
35   *
36   * <p>The Euler algorithm is the simplest one that can be used to
37   * integrate ordinary differential equations. It is a simple inversion
38   * of the forward difference expression :
39   * <code>f'=(f(t+h)-f(t))/h</code> which leads to
40   * <code>f(t+h)=f(t)+hf'</code>. The interpolation scheme used for
41   * dense output is the linear scheme already used for integration.</p>
42   *
43   * <p>This algorithm looks cheap because it needs only one function
44   * evaluation per step. However, as it uses linear estimates, it needs
45   * very small steps to achieve high accuracy, and small steps lead to
46   * numerical errors and instabilities.</p>
47   *
48   * <p>This algorithm is almost never used and has been included in
49   * this package only as a comparison reference for more useful
50   * integrators.</p>
51   *
52   * @see MidpointFieldIntegrator
53   * @see ClassicalRungeKuttaFieldIntegrator
54   * @see GillFieldIntegrator
55   * @see ThreeEighthesFieldIntegrator
56   * @see LutherFieldIntegrator
57   * @param <T> the type of the field elements
58   */
59  
60  public class EulerFieldIntegrator<T extends CalculusFieldElement<T>> extends FixedStepRungeKuttaFieldIntegrator<T> {
61  
62      /** Name of integration scheme. */
63      public static final String METHOD_NAME = EulerIntegrator.METHOD_NAME;
64  
65      /** Simple constructor.
66       * Build an Euler integrator with the given step.
67       * @param field field to which the time and state vector elements belong
68       * @param step integration step
69       */
70      public EulerFieldIntegrator(final Field<T> field, final T step) {
71          super(field, METHOD_NAME, step);
72      }
73  
74      /** {@inheritDoc} */
75      @Override
76      public T[] getC() {
77          return MathArrays.buildArray(getField(), 0);
78      }
79  
80      /** {@inheritDoc} */
81      @Override
82      public T[][] getA() {
83          return MathArrays.buildArray(getField(), 0, 0);
84      }
85  
86      /** {@inheritDoc} */
87      @Override
88      public T[] getB() {
89          final T[] b = MathArrays.buildArray(getField(), 1);
90          b[0] = getField().getOne();
91          return b;
92      }
93  
94      /** {@inheritDoc} */
95      @Override
96      protected EulerFieldStateInterpolator<T>
97          createInterpolator(final boolean forward, T[][] yDotK,
98                             final FieldODEStateAndDerivative<T> globalPreviousState,
99                             final FieldODEStateAndDerivative<T> globalCurrentState,
100                            final FieldEquationsMapper<T> mapper) {
101         return new EulerFieldStateInterpolator<>(getField(), forward, yDotK,
102                                                  globalPreviousState, globalCurrentState,
103                                                  globalPreviousState, globalCurrentState,
104                                                  mapper);
105     }
106 
107 }