View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim;
23  
24  import org.hipparchus.exception.LocalizedCoreFormats;
25  import org.hipparchus.exception.MathIllegalArgumentException;
26  import org.hipparchus.exception.MathIllegalStateException;
27  import org.hipparchus.random.RandomVectorGenerator;
28  
29  /**
30   * Base class multi-start optimizer for a multivariate function.
31   * <br>
32   * This class wraps an optimizer in order to use it several times in
33   * turn with different starting points (trying to avoid being trapped
34   * in a local extremum when looking for a global one).
35   * <em>It is not a "user" class.</em>
36   *
37   * @param <P> Type of the point/value pair returned by the optimization
38   * algorithm.
39   *
40   */
41  public abstract class BaseMultiStartMultivariateOptimizer<P>
42      extends BaseMultivariateOptimizer<P> {
43      /** Underlying classical optimizer. */
44      private final BaseMultivariateOptimizer<P> optimizer;
45      /** Number of evaluations already performed for all starts. */
46      private int totalEvaluations;
47      /** Number of starts to go. */
48      private int starts;
49      /** Random generator for multi-start. */
50      private RandomVectorGenerator generator;
51      /** Optimization data. */
52      private OptimizationData[] optimData;
53      /**
54       * Location in {@link #optimData} where the updated maximum
55       * number of evaluations will be stored.
56       */
57      private int maxEvalIndex = -1;
58      /**
59       * Location in {@link #optimData} where the updated start value
60       * will be stored.
61       */
62      private int initialGuessIndex = -1;
63  
64      /**
65       * Create a multi-start optimizer from a single-start optimizer.
66       * <p>
67       * Note that if there are bounds constraints (see {@link #getLowerBound()}
68       * and {@link #getUpperBound()}), then a simple rejection algorithm is used
69       * at each restart. This implies that the random vector generator should have
70       * a good probability to generate vectors in the bounded domain, otherwise the
71       * rejection algorithm will hit the {@link #getMaxEvaluations()} count without
72       * generating a proper restart point. Users must be take great care of the <a
73       * href="http://en.wikipedia.org/wiki/Curse_of_dimensionality">curse of dimensionality</a>.
74       * </p>
75       * @param optimizer Single-start optimizer to wrap.
76       * @param starts Number of starts to perform. If {@code starts == 1},
77       * the {@link #optimize(OptimizationData[]) optimize} will return the
78       * same solution as the given {@code optimizer} would return.
79       * @param generator Random vector generator to use for restarts.
80       * @throws MathIllegalArgumentException if {@code starts < 1}.
81       */
82      protected BaseMultiStartMultivariateOptimizer(final BaseMultivariateOptimizer<P> optimizer, final int starts,
83                                                    final RandomVectorGenerator generator) {
84          super(optimizer.getConvergenceChecker());
85  
86          if (starts < 1) {
87              throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
88                                                     starts, 1);
89          }
90  
91          this.optimizer = optimizer;
92          this.starts = starts;
93          this.generator = generator;
94      }
95  
96      /** {@inheritDoc} */
97      @Override
98      public int getEvaluations() {
99          return totalEvaluations;
100     }
101 
102     /**
103      * Gets all the optima found during the last call to {@code optimize}.
104      * The optimizer stores all the optima found during a set of
105      * restarts. The {@code optimize} method returns the best point only.
106      * This method returns all the points found at the end of each starts,
107      * including the best one already returned by the {@code optimize} method.
108      * <br>
109      * The returned array as one element for each start as specified
110      * in the constructor. It is ordered with the results from the
111      * runs that did converge first, sorted from best to worst
112      * objective value (i.e in ascending order if minimizing and in
113      * descending order if maximizing), followed by {@code null} elements
114      * corresponding to the runs that did not converge. This means all
115      * elements will be {@code null} if the {@code optimize} method did throw
116      * an exception.
117      * This also means that if the first element is not {@code null}, it is
118      * the best point found across all starts.
119      * <br>
120      * The behaviour is undefined if this method is called before
121      * {@code optimize}; it will likely throw {@code NullPointerException}.
122      *
123      * @return an array containing the optima sorted from best to worst.
124      */
125     public abstract P[] getOptima();
126 
127     /**
128      * {@inheritDoc}
129      *
130      * @throws MathIllegalStateException if {@code optData} does not contain an
131      * instance of {@link MaxEval} or {@link InitialGuess}.
132      */
133     @Override
134     public P optimize(OptimizationData... optData) {
135         // Store arguments in order to pass them to the internal optimizer.
136        optimData = optData.clone();
137         // Set up base class and perform computations.
138         return super.optimize(optData);
139     }
140 
141     /** {@inheritDoc} */
142     @Override
143     protected P doOptimize() {
144         // Remove all instances of "MaxEval" and "InitialGuess" from the
145         // array that will be passed to the internal optimizer.
146         // The former is to enforce smaller numbers of allowed evaluations
147         // (according to how many have been used up already), and the latter
148         // to impose a different start value for each start.
149         for (int i = 0; i < optimData.length; i++) {
150             if (optimData[i] instanceof MaxEval) {
151                 optimData[i] = null;
152                 maxEvalIndex = i;
153             }
154             if (optimData[i] instanceof InitialGuess) {
155                 optimData[i] = null;
156                 initialGuessIndex = i;
157                 continue;
158             }
159         }
160         if (maxEvalIndex == -1) {
161             throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
162         }
163         if (initialGuessIndex == -1) {
164             throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
165         }
166 
167         RuntimeException lastException = null;
168         totalEvaluations = 0;
169         clear();
170 
171         final int maxEval = getMaxEvaluations();
172         final double[] min = getLowerBound();
173         final double[] max = getUpperBound();
174         final double[] startPoint = getStartPoint();
175 
176         // Multi-start loop.
177         for (int i = 0; i < starts; i++) {
178             // CHECKSTYLE: stop IllegalCatch
179             try {
180                 // Decrease number of allowed evaluations.
181                 optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
182                 // New start value.
183                 double[] s = null;
184                 if (i == 0) {
185                     s = startPoint;
186                 } else {
187                     int attempts = 0;
188                     while (s == null) {
189                         if (attempts >= getMaxEvaluations()) {
190                             throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED,
191                                                                 getMaxEvaluations());
192                         }
193                         s = generator.nextVector();
194                         for (int k = 0; s != null && k < s.length; ++k) {
195                             if ((min != null && s[k] < min[k]) || (max != null && s[k] > max[k])) {
196                                 // reject the vector
197                                 s = null;
198                             }
199                         }
200                         ++attempts;
201                     }
202                 }
203                 optimData[initialGuessIndex] = new InitialGuess(s);
204                 // Optimize.
205                 final P result = optimizer.optimize(optimData);
206                 store(result);
207             } catch (RuntimeException mue) { // NOPMD - caching a RuntimeException is intentional here, it will be rethrown later
208                 lastException = mue;
209             }
210             // CHECKSTYLE: resume IllegalCatch
211 
212             totalEvaluations += optimizer.getEvaluations();
213         }
214 
215         final P[] optima = getOptima();
216         if (optima.length == 0) {
217             // All runs failed.
218             throw lastException; // Cannot be null if starts >= 1.
219         }
220 
221         // Return the best optimum.
222         return optima[0];
223     }
224 
225     /**
226      * Method that will be called in order to store each found optimum.
227      *
228      * @param optimum Result of an optimization run.
229      */
230     protected abstract void store(P optimum);
231     /**
232      * Method that will called in order to clear all stored optima.
233      */
234     protected abstract void clear();
235 }