1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.optim.linear;
23
24 import java.util.ArrayList;
25 import java.util.List;
26
27 import org.hipparchus.exception.MathIllegalStateException;
28 import org.hipparchus.optim.LocalizedOptimFormats;
29 import org.hipparchus.optim.OptimizationData;
30 import org.hipparchus.optim.PointValuePair;
31 import org.hipparchus.util.FastMath;
32 import org.hipparchus.util.Precision;
33
34 /**
35 * Solves a linear problem using the "Two-Phase Simplex" method.
36 * <p>
37 * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided
38 * as arguments to {@link #optimize(OptimizationData...)}:
39 * <ul>
40 * <li>objective function: {@link LinearObjectiveFunction} - mandatory</li>
41 * <li>linear constraints {@link LinearConstraintSet} - mandatory</li>
42 * <li>type of optimization: {@link org.hipparchus.optim.nonlinear.scalar.GoalType GoalType}
43 * - optional, default: {@link org.hipparchus.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li>
44 * <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li>
45 * <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li>
46 * <li>callback for the best solution: {@link SolutionCallback} - optional</li>
47 * <li>maximum number of iterations: {@link org.hipparchus.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li>
48 * </ul>
49 * <p>
50 * <b>Note:</b> Depending on the problem definition, the default convergence criteria
51 * may be too strict, resulting in {@link MathIllegalStateException} or
52 * {@link MathIllegalStateException}. In such a case it is advised to adjust these
53 * criteria with more appropriate values, e.g. relaxing the epsilon value.
54 * <p>
55 * Default convergence criteria:
56 * <ul>
57 * <li>Algorithm convergence: 1e-6</li>
58 * <li>Floating-point comparisons: 10 ulp</li>
59 * <li>Cut-Off value: 1e-10</li>
60 * </ul>
61 * <p>
62 * The cut-off value has been introduced to handle the case of very small pivot elements
63 * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy.
64 * Potential pivot elements smaller than this value will be treated as if they were zero
65 * and are thus not considered by the pivot selection mechanism. The default value is safe
66 * for many problems, but may need to be adjusted in case of very small coefficients
67 * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}.
68 *
69 */
70 public class SimplexSolver extends LinearOptimizer {
71 /** Default amount of error to accept in floating point comparisons (as ulps). */
72 static final int DEFAULT_ULPS = 10;
73
74 /** Default cut-off value. */
75 static final double DEFAULT_CUT_OFF = 1e-10;
76
77 /** Default amount of error to accept for algorithm convergence. */
78 private static final double DEFAULT_EPSILON = 1.0e-6;
79
80 /** Amount of error to accept for algorithm convergence. */
81 private final double epsilon;
82
83 /** Amount of error to accept in floating point comparisons (as ulps). */
84 private final int maxUlps;
85
86 /**
87 * Cut-off value for entries in the tableau: values smaller than the cut-off
88 * are treated as zero to improve numerical stability.
89 */
90 private final double cutOff;
91
92 /** The pivot selection method to use. */
93 private PivotSelectionRule pivotSelection;
94
95 /**
96 * The solution callback to access the best solution found so far in case
97 * the optimizer fails to find an optimal solution within the iteration limits.
98 */
99 private SolutionCallback solutionCallback;
100
101 /**
102 * Builds a simplex solver with default settings.
103 */
104 public SimplexSolver() {
105 this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF);
106 }
107
108 /**
109 * Builds a simplex solver with a specified accepted amount of error.
110 *
111 * @param epsilon Amount of error to accept for algorithm convergence.
112 */
113 public SimplexSolver(final double epsilon) {
114 this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF);
115 }
116
117 /**
118 * Builds a simplex solver with a specified accepted amount of error.
119 *
120 * @param epsilon Amount of error to accept for algorithm convergence.
121 * @param maxUlps Amount of error to accept in floating point comparisons.
122 */
123 public SimplexSolver(final double epsilon, final int maxUlps) {
124 this(epsilon, maxUlps, DEFAULT_CUT_OFF);
125 }
126
127 /**
128 * Builds a simplex solver with a specified accepted amount of error.
129 *
130 * @param epsilon Amount of error to accept for algorithm convergence.
131 * @param maxUlps Amount of error to accept in floating point comparisons.
132 * @param cutOff Values smaller than the cutOff are treated as zero.
133 */
134 public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) {
135 this.epsilon = epsilon;
136 this.maxUlps = maxUlps;
137 this.cutOff = cutOff;
138 this.pivotSelection = PivotSelectionRule.DANTZIG;
139 }
140
141 /**
142 * {@inheritDoc}
143 *
144 * @param optData Optimization data. In addition to those documented in
145 * {@link LinearOptimizer#optimize(OptimizationData...)
146 * LinearOptimizer}, this method will register the following data:
147 * <ul>
148 * <li>{@link SolutionCallback}</li>
149 * <li>{@link PivotSelectionRule}</li>
150 * </ul>
151 *
152 * @return {@inheritDoc}
153 * @throws MathIllegalStateException if the maximal number of iterations is exceeded.
154 * @throws org.hipparchus.exception.MathIllegalArgumentException if the dimension
155 * of the constraints does not match the dimension of the objective function
156 */
157 @Override
158 public PointValuePair optimize(OptimizationData... optData)
159 throws MathIllegalStateException {
160 // Set up base class and perform computation.
161 return super.optimize(optData);
162 }
163
164 /**
165 * {@inheritDoc}
166 *
167 * @param optData Optimization data.
168 * In addition to those documented in
169 * {@link LinearOptimizer#parseOptimizationData(OptimizationData[])
170 * LinearOptimizer}, this method will register the following data:
171 * <ul>
172 * <li>{@link SolutionCallback}</li>
173 * <li>{@link PivotSelectionRule}</li>
174 * </ul>
175 */
176 @Override
177 protected void parseOptimizationData(OptimizationData... optData) {
178 // Allow base class to register its own data.
179 super.parseOptimizationData(optData);
180
181 // reset the callback before parsing
182 solutionCallback = null;
183
184 for (OptimizationData data : optData) {
185 if (data instanceof SolutionCallback) {
186 solutionCallback = (SolutionCallback) data;
187 continue;
188 }
189 if (data instanceof PivotSelectionRule) {
190 pivotSelection = (PivotSelectionRule) data;
191 continue;
192 }
193 }
194 }
195
196 /**
197 * Returns the column with the most negative coefficient in the objective function row.
198 *
199 * @param tableau Simple tableau for the problem.
200 * @return the column with the most negative coefficient.
201 */
202 private Integer getPivotColumn(SimplexTableau tableau) {
203 double minValue = 0;
204 Integer minPos = null;
205 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
206 final double entry = tableau.getEntry(0, i);
207 // check if the entry is strictly smaller than the current minimum
208 // do not use a ulp/epsilon check
209 if (entry < minValue) {
210 minValue = entry;
211 minPos = i;
212
213 // Bland's rule: chose the entering column with the lowest index
214 if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) {
215 break;
216 }
217 }
218 }
219 return minPos;
220 }
221
222 /**
223 * Checks whether the given column is valid pivot column, i.e. will result
224 * in a valid pivot row.
225 * <p>
226 * When applying Bland's rule to select the pivot column, it may happen that
227 * there is no corresponding pivot row. This method will check if the selected
228 * pivot column will return a valid pivot row.
229 *
230 * @param tableau simplex tableau for the problem
231 * @param col the column to test
232 * @return {@code true} if the pivot column is valid, {@code false} otherwise
233 */
234 private boolean isValidPivotColumn(SimplexTableau tableau, int col) {
235 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
236 final double entry = tableau.getEntry(i, col);
237
238 // do the same check as in getPivotRow
239 if (Precision.compareTo(entry, 0d, cutOff) > 0) {
240 return true;
241 }
242 }
243 return false;
244 }
245
246 /**
247 * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
248 *
249 * @param tableau Simplex tableau for the problem.
250 * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}).
251 * @return the row with the minimum ratio.
252 */
253 private Integer getPivotRow(SimplexTableau tableau, final int col) {
254 // create a list of all the rows that tie for the lowest score in the minimum ratio test
255 List<Integer> minRatioPositions = new ArrayList<>();
256 double minRatio = Double.MAX_VALUE;
257 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
258 final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
259 final double entry = tableau.getEntry(i, col);
260
261 // only consider pivot elements larger than the cutOff threshold
262 // selecting others may lead to degeneracy or numerical instabilities
263 if (Precision.compareTo(entry, 0d, cutOff) > 0) {
264 final double ratio = FastMath.abs(rhs / entry);
265 // check if the entry is strictly equal to the current min ratio
266 // do not use a ulp/epsilon check
267 final int cmp = Double.compare(ratio, minRatio);
268 if (cmp == 0) {
269 minRatioPositions.add(i);
270 } else if (cmp < 0) {
271 minRatio = ratio;
272 minRatioPositions.clear();
273 minRatioPositions.add(i);
274 }
275 }
276 }
277
278 if (minRatioPositions.isEmpty()) {
279 return null;
280 } else if (minRatioPositions.size() > 1) {
281 // there's a degeneracy as indicated by a tie in the minimum ratio test
282
283 // 1. check if there's an artificial variable that can be forced out of the basis
284 if (tableau.getNumArtificialVariables() > 0) {
285 for (Integer row : minRatioPositions) {
286 for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
287 int column = i + tableau.getArtificialVariableOffset();
288 final double entry = tableau.getEntry(row, column);
289 if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
290 return row;
291 }
292 }
293 }
294 }
295
296 // 2. apply Bland's rule to prevent cycling:
297 // take the row for which the corresponding basic variable has the smallest index
298 //
299 // see http://www.stanford.edu/class/msande310/blandrule.pdf
300 // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
301
302 Integer minRow = null;
303 int minIndex = tableau.getWidth();
304 for (Integer row : minRatioPositions) {
305 final int basicVar = tableau.getBasicVariable(row);
306 if (basicVar < minIndex) {
307 minIndex = basicVar;
308 minRow = row;
309 }
310 }
311 return minRow;
312 }
313 return minRatioPositions.get(0);
314 }
315
316 /**
317 * Runs one iteration of the Simplex method on the given model.
318 *
319 * @param tableau Simple tableau for the problem.
320 * @throws MathIllegalStateException if the allowed number of iterations has been exhausted.
321 * @throws MathIllegalStateException if the model is found not to have a bounded solution.
322 */
323 protected void doIteration(final SimplexTableau tableau)
324 throws MathIllegalStateException {
325
326 incrementIterationCount();
327
328 Integer pivotCol = getPivotColumn(tableau);
329 Integer pivotRow = getPivotRow(tableau, pivotCol);
330 if (pivotRow == null) {
331 throw new MathIllegalStateException(LocalizedOptimFormats.UNBOUNDED_SOLUTION);
332 }
333
334 tableau.performRowOperations(pivotCol, pivotRow);
335 }
336
337 /**
338 * Solves Phase 1 of the Simplex method.
339 *
340 * @param tableau Simple tableau for the problem.
341 * @throws MathIllegalStateException if the allowed number of iterations has been exhausted,
342 * or if the model is found not to have a bounded solution, or if there is no feasible solution
343 */
344 protected void solvePhase1(final SimplexTableau tableau)
345 throws MathIllegalStateException {
346
347 // make sure we're in Phase 1
348 if (tableau.getNumArtificialVariables() == 0) {
349 return;
350 }
351
352 while (!tableau.isOptimal()) {
353 doIteration(tableau);
354 }
355
356 // if W is not zero then we have no feasible solution
357 if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
358 throw new MathIllegalStateException(LocalizedOptimFormats.NO_FEASIBLE_SOLUTION);
359 }
360 }
361
362 /** {@inheritDoc} */
363 @Override
364 public PointValuePair doOptimize()
365 throws MathIllegalStateException {
366
367 // reset the tableau to indicate a non-feasible solution in case
368 // we do not pass phase 1 successfully
369 if (solutionCallback != null) {
370 solutionCallback.setTableau(null);
371 }
372
373 final SimplexTableau tableau =
374 new SimplexTableau(getFunction(),
375 getConstraints(),
376 getGoalType(),
377 isRestrictedToNonNegative(),
378 epsilon,
379 maxUlps);
380
381 solvePhase1(tableau);
382 tableau.dropPhase1Objective();
383
384 // after phase 1, we are sure to have a feasible solution
385 if (solutionCallback != null) {
386 solutionCallback.setTableau(tableau);
387 }
388
389 while (!tableau.isOptimal()) {
390 doIteration(tableau);
391 }
392
393 // check that the solution respects the nonNegative restriction in case
394 // the epsilon/cutOff values are too large for the actual linear problem
395 // (e.g. with very small constraint coefficients), the solver might actually
396 // find a non-valid solution (with negative coefficients).
397 final PointValuePair solution = tableau.getSolution();
398 if (isRestrictedToNonNegative()) {
399 final double[] coeff = solution.getPoint();
400 for (double v : coeff) {
401 if (Precision.compareTo(v, 0, epsilon) < 0) {
402 throw new MathIllegalStateException(LocalizedOptimFormats.NO_FEASIBLE_SOLUTION);
403 }
404 }
405 }
406 return solution;
407 }
408 }