View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.nonlinear.scalar;
23  
24  import java.util.ArrayList;
25  import java.util.Comparator;
26  import java.util.List;
27  
28  import org.hipparchus.exception.MathIllegalArgumentException;
29  import org.hipparchus.exception.NullArgumentException;
30  import org.hipparchus.optim.BaseMultiStartMultivariateOptimizer;
31  import org.hipparchus.optim.PointValuePair;
32  import org.hipparchus.random.RandomVectorGenerator;
33  
34  /**
35   * Multi-start optimizer.
36   * This class wraps an optimizer in order to use it several times in
37   * turn with different starting points (trying to avoid being trapped
38   * in a local extremum when looking for a global one).
39   *
40   */
41  public class MultiStartMultivariateOptimizer
42      extends BaseMultiStartMultivariateOptimizer<PointValuePair> {
43      /** Underlying optimizer. */
44      private final MultivariateOptimizer optimizer;
45      /** Found optima. */
46      private final List<PointValuePair> optima;
47  
48      /**
49       * Create a multi-start optimizer from a single-start optimizer.
50       *
51       * @param optimizer Single-start optimizer to wrap.
52       * @param starts Number of starts to perform.
53       * If {@code starts == 1}, the result will be same as if {@code optimizer}
54       * is called directly.
55       * @param generator Random vector generator to use for restarts.
56       * @throws NullArgumentException if {@code optimizer} or {@code generator}
57       * is {@code null}.
58       * @throws MathIllegalArgumentException if {@code starts < 1}.
59       */
60      public MultiStartMultivariateOptimizer(final MultivariateOptimizer optimizer,
61                                             final int starts,
62                                             final RandomVectorGenerator generator)
63          throws MathIllegalArgumentException, NullArgumentException {
64          super(optimizer, starts, generator);
65          this.optimizer = optimizer;
66          this.optima   = new ArrayList<>();
67      }
68  
69      /**
70       * {@inheritDoc}
71       */
72      @Override
73      public PointValuePair[] getOptima() {
74          optima.sort(getPairComparator());
75          return optima.toArray(new PointValuePair[0]);
76      }
77  
78      /**
79       * {@inheritDoc}
80       */
81      @Override
82      protected void store(PointValuePair optimum) {
83          optima.add(optimum);
84      }
85  
86      /**
87       * {@inheritDoc}
88       */
89      @Override
90      protected void clear() {
91          optima.clear();
92      }
93  
94      /**
95       * @return a comparator for sorting the optima.
96       */
97      private Comparator<PointValuePair> getPairComparator() {
98          return new Comparator<PointValuePair>() {
99              /** {@inheritDoc} */
100             @Override
101             public int compare(final PointValuePair o1,
102                                final PointValuePair o2) {
103                 if (o1 == null) {
104                     return (o2 == null) ? 0 : 1;
105                 } else if (o2 == null) {
106                     return -1;
107                 }
108                 final double v1 = o1.getValue();
109                 final double v2 = o2.getValue();
110                 return (optimizer.getGoalType() == GoalType.MINIMIZE) ?
111                     Double.compare(v1, v2) : Double.compare(v2, v1);
112             }
113         };
114     }
115 }