Class FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.FieldUnivariateDerivative<T,FieldUnivariateDerivative1<T>>
-
- org.hipparchus.analysis.differentiation.FieldUnivariateDerivative1<T>
-
- Type Parameters:
T- the type of the function parameters and value
- All Implemented Interfaces:
DifferentialAlgebra,FieldDerivative<T,FieldUnivariateDerivative1<T>>,FieldDerivative1<T,FieldUnivariateDerivative1<T>>,CalculusFieldElement<FieldUnivariateDerivative1<T>>,FieldElement<FieldUnivariateDerivative1<T>>
public class FieldUnivariateDerivative1<T extends CalculusFieldElement<T>> extends FieldUnivariateDerivative<T,FieldUnivariateDerivative1<T>> implements FieldDerivative1<T,FieldUnivariateDerivative1<T>>
Class representing both the value and the differentials of a function.This class is a stripped-down version of
FieldDerivativeStructurewith only onefree parameterandderivation orderalso limited to one. It should have less overhead thanFieldDerivativeStructurein its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
FieldUnivariateDerivative1instances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using
Derivative-based classes (or in fact anyCalculusFieldElementclass) is a tedious and error-prone task but has the advantage of not requiring users to compute the derivatives by themselves and allowing to switch for one derivative implementation to another as they all share the same filed API.Instances of this class are guaranteed to be immutable.
- Since:
- 1.7
- See Also:
DerivativeStructure,UnivariateDerivative1,UnivariateDerivative2,Gradient,FieldDerivativeStructure,FieldUnivariateDerivative2,FieldGradient
-
-
Constructor Summary
Constructors Constructor Description FieldUnivariateDerivative1(FieldDerivativeStructure<T> ds)Build an instance from aFieldDerivativeStructure.FieldUnivariateDerivative1(T f0, T f1)Build an instance with values and derivative.
-
Method Summary
-
Methods inherited from class org.hipparchus.analysis.differentiation.FieldUnivariateDerivative
getFreeParameters, getPartialDerivative
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.analysis.differentiation.DifferentialAlgebra
getFreeParameters
-
Methods inherited from interface org.hipparchus.analysis.differentiation.FieldDerivative
add, ceil, floor, getExponent, getPartialDerivative, getReal, pow, rint, sign, subtract, ulp
-
Methods inherited from interface org.hipparchus.analysis.differentiation.FieldDerivative1
acos, acosh, asin, asinh, atan, atanh, cbrt, cos, cosh, exp, expm1, getOrder, log, log10, log1p, reciprocal, sin, sinCos, sinh, sinhCosh, sqrt, square, tan, tanh
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
FieldUnivariateDerivative1
public FieldUnivariateDerivative1(T f0, T f1)
Build an instance with values and derivative.- Parameters:
f0- value of the functionf1- first derivative of the function
-
FieldUnivariateDerivative1
public FieldUnivariateDerivative1(FieldDerivativeStructure<T> ds) throws MathIllegalArgumentException
Build an instance from aFieldDerivativeStructure.- Parameters:
ds- derivative structure- Throws:
MathIllegalArgumentException- if eitherdsparameters is not 1 ordsorder is not 1
-
-
Method Detail
-
newInstance
public FieldUnivariateDerivative1<T> newInstance(double value)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
value- constant real value- Returns:
- instance corresponding to a constant real value
-
newInstance
public FieldUnivariateDerivative1<T> newInstance(T value)
Create an instance corresponding to a constant Field value.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
newInstancein interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Parameters:
value- constant value- Returns:
- instance corresponding to a constant Field value
-
withValue
public FieldUnivariateDerivative1<T> withValue(T value)
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
withValuein interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Parameters:
value- zeroth-order derivative of new represented function- Returns:
- new object with changed value
-
getAddendum
public FieldUnivariateDerivative1<T> getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real partrecovers the instance. This means that whene.getReal()is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())iseande.subtract(e.getReal())ise.getAddendum(). Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendumin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- real value
-
getValue
public T getValue()
Get the value part of the univariate derivative.- Specified by:
getValuein interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Returns:
- value part of the univariate derivative
-
getDerivative
public T getDerivative(int n)
Get a derivative from the univariate derivative.- Specified by:
getDerivativein classFieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Parameters:
n- derivation order (must be between 0 andDifferentialAlgebra.getOrder(), both inclusive)- Returns:
- nth derivative, or
NaNif n is either negative or strictly larger thanDifferentialAlgebra.getOrder()
-
getFirstDerivative
public T getFirstDerivative()
Get the first derivative.- Returns:
- first derivative
- See Also:
getValue()
-
getValueField
public Field<T> getValueField()
Get theFieldthe value and parameters of the function belongs to.- Returns:
Fieldthe value and parameters of the function belongs to
-
toDerivativeStructure
public FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure.- Specified by:
toDerivativeStructurein classFieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Returns:
- derivative structure with same value and derivative as the instance
-
add
public FieldUnivariateDerivative1<T> add(double a)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldUnivariateDerivative1<T> add(FieldUnivariateDerivative1<T> a)
Compute this + a.- Specified by:
addin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
public FieldUnivariateDerivative1<T> subtract(double a)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldUnivariateDerivative1<T> subtract(FieldUnivariateDerivative1<T> a)
Compute this - a.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
subtractin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
multiply
public FieldUnivariateDerivative1<T> multiply(T a)
'×' operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldUnivariateDerivative1<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public FieldUnivariateDerivative1<T> multiply(double a)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldUnivariateDerivative1<T> multiply(FieldUnivariateDerivative1<T> a)
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
divide
public FieldUnivariateDerivative1<T> divide(T a)
'÷' operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldUnivariateDerivative1<T> divide(double a)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldUnivariateDerivative1<T> divide(FieldUnivariateDerivative1<T> a)
Compute this ÷ a.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
dividein interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public FieldUnivariateDerivative1<T> remainder(T a)
IEEE remainder operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
-
remainder
public FieldUnivariateDerivative1<T> remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldUnivariateDerivative1<T> remainder(FieldUnivariateDerivative1<T> a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public FieldUnivariateDerivative1<T> negate()
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the opposite of
this.
-
abs
public FieldUnivariateDerivative1<T> abs()
absolute value.- Specified by:
absin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- abs(this)
-
copySign
public FieldUnivariateDerivative1<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public FieldUnivariateDerivative1<T> copySign(FieldUnivariateDerivative1<T> sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public FieldUnivariateDerivative1<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
public FieldUnivariateDerivative1<T> scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power of 2- Returns:
- this × 2n
-
hypot
public FieldUnivariateDerivative1<T> hypot(FieldUnivariateDerivative1<T> y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
compose
public FieldUnivariateDerivative1<T> compose(T g0, T g1)
Compute composition of the instance by a function.- Specified by:
composein interfaceFieldDerivative1<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>- Parameters:
g0- value of the function at the current point (i.e. atg(getValue()))g1- first derivative of the function at the current point (i.e. atg'(getValue()))- Returns:
- g(this)
-
rootN
public FieldUnivariateDerivative1<T> rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
getField
public FieldUnivariateDerivative1Field<T> getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
Fieldto which the instance belongs
-
pow
public static <T extends CalculusFieldElement<T>> FieldUnivariateDerivative1<T> pow(double a, FieldUnivariateDerivative1<T> x)
Compute ax where a is a double and x aFieldUnivariateDerivative1- Type Parameters:
T- the type of the function parameters and value- Parameters:
a- number to exponentiatex- power to apply- Returns:
- ax
-
pow
public FieldUnivariateDerivative1<T> pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public FieldUnivariateDerivative1<T> pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power to apply- Returns:
- thisn
-
atan2
public FieldUnivariateDerivative1<T> atan2(FieldUnivariateDerivative1<T> x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
toDegrees
public FieldUnivariateDerivative1<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into degrees
-
toRadians
public FieldUnivariateDerivative1<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into radians
-
taylor
public T taylor(double delta)
Evaluate Taylor expansion of a univariate derivative.- Parameters:
delta- parameter offset Δx- Returns:
- value of the Taylor expansion at x + Δx
-
taylor
public T taylor(T delta)
Evaluate Taylor expansion of a univariate derivative.- Parameters:
delta- parameter offset Δx- Returns:
- value of the Taylor expansion at x + Δx
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T>[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(T a1, FieldUnivariateDerivative1<T> b1, T a2, FieldUnivariateDerivative1<T> b2, T a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1),linearCombination(double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3, FieldUnivariateDerivative1<T> a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3, double a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public FieldUnivariateDerivative1<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-