org.hipparchus.analysis.differentiation

## Class FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>

• ### Constructor Summary

Constructors
Constructor and Description
FieldUnivariateDerivative2(FieldDerivativeStructure<T> ds)
Build an instance from a DerivativeStructure.
FieldUnivariateDerivative2(T f0, T f1, T f2)
Build an instance with values and derivative.
• ### Method Summary

All Methods
Modifier and Type Method and Description
FieldUnivariateDerivative2<T> abs()
absolute value.
FieldUnivariateDerivative2<T> acos()
Arc cosine operation.
FieldUnivariateDerivative2<T> acosh()
Inverse hyperbolic cosine operation.
FieldUnivariateDerivative2<T> add(double a)
'+' operator.
FieldUnivariateDerivative2<T> add(FieldUnivariateDerivative2<T> a)
Compute this + a.
FieldUnivariateDerivative2<T> add(T a)
'+' operator.
FieldUnivariateDerivative2<T> asin()
Arc sine operation.
FieldUnivariateDerivative2<T> asinh()
Inverse hyperbolic sine operation.
FieldUnivariateDerivative2<T> atan()
Arc tangent operation.
FieldUnivariateDerivative2<T> atan2(FieldUnivariateDerivative2<T> x)
Two arguments arc tangent operation.
FieldUnivariateDerivative2<T> atanh()
Inverse hyperbolic tangent operation.
FieldUnivariateDerivative2<T> cbrt()
Cubic root.
FieldUnivariateDerivative2<T> ceil()
Get the smallest whole number larger than instance.
FieldUnivariateDerivative2<T> compose(T g0, T g1, T g2)
Compute composition of the instance by a function.
FieldUnivariateDerivative2<T> copySign(double sign)
Returns the instance with the sign of the argument.
FieldUnivariateDerivative2<T> copySign(FieldUnivariateDerivative2<T> sign)
Returns the instance with the sign of the argument.
FieldUnivariateDerivative2<T> copySign(T sign)
Returns the instance with the sign of the argument.
FieldUnivariateDerivative2<T> cos()
Cosine operation.
FieldUnivariateDerivative2<T> cosh()
Hyperbolic cosine operation.
FieldUnivariateDerivative2<T> divide(double a)
'÷' operator.
FieldUnivariateDerivative2<T> divide(FieldUnivariateDerivative2<T> a)
Compute this ÷ a.
FieldUnivariateDerivative2<T> divide(T a)
'÷' operator.
boolean equals(Object other)
Test for the equality of two univariate derivatives.
FieldUnivariateDerivative2<T> exp()
Exponential.
FieldUnivariateDerivative2<T> expm1()
Exponential minus 1.
FieldUnivariateDerivative2<T> floor()
Get the largest whole number smaller than instance.
T getDerivative(int n)
Get a derivative from the univariate derivative.
int getExponent()
Return the exponent of the instance, removing the bias.
FieldUnivariateDerivative2Field<T> getField()
Get the Field to which the instance belongs.
T getFirstDerivative()
Get the first derivative.
int getOrder()
Get the derivation order.
FieldUnivariateDerivative2<T> getPi()
Get the Archimedes constant π.
double getReal()
Get the real value of the number.
T getSecondDerivative()
Get the second derivative.
T getValue()
Get the value part of the univariate derivative.
Field<T> getValueField()
Get the Field the value and parameters of the function belongs to.
int hashCode()
Get a hashCode for the univariate derivative.
FieldUnivariateDerivative2<T> hypot(FieldUnivariateDerivative2<T> y)
Returns the hypotenuse of a triangle with sides this and y - sqrt(this2 +y2) avoiding intermediate overflow or underflow.
FieldUnivariateDerivative2<T> linearCombination(double[] a, FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(double a1, FieldUnivariateDerivative2<T> b1, double a2, FieldUnivariateDerivative2<T> b2)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(double a1, FieldUnivariateDerivative2<T> b1, double a2, FieldUnivariateDerivative2<T> b2, double a3, FieldUnivariateDerivative2<T> b3)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(double a1, FieldUnivariateDerivative2<T> b1, double a2, FieldUnivariateDerivative2<T> b2, double a3, FieldUnivariateDerivative2<T> b3, double a4, FieldUnivariateDerivative2<T> b4)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(FieldUnivariateDerivative2<T>[] a, FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(FieldUnivariateDerivative2<T> a1, FieldUnivariateDerivative2<T> b1, FieldUnivariateDerivative2<T> a2, FieldUnivariateDerivative2<T> b2)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(FieldUnivariateDerivative2<T> a1, FieldUnivariateDerivative2<T> b1, FieldUnivariateDerivative2<T> a2, FieldUnivariateDerivative2<T> b2, FieldUnivariateDerivative2<T> a3, FieldUnivariateDerivative2<T> b3)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(FieldUnivariateDerivative2<T> a1, FieldUnivariateDerivative2<T> b1, FieldUnivariateDerivative2<T> a2, FieldUnivariateDerivative2<T> b2, FieldUnivariateDerivative2<T> a3, FieldUnivariateDerivative2<T> b3, FieldUnivariateDerivative2<T> a4, FieldUnivariateDerivative2<T> b4)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(T[] a, FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
FieldUnivariateDerivative2<T> linearCombination(T a1, FieldUnivariateDerivative2<T> b1, T a2, FieldUnivariateDerivative2<T> b2, T a3, FieldUnivariateDerivative2<T> b3)
Compute a linear combination.
FieldUnivariateDerivative2<T> log()
Natural logarithm.
FieldUnivariateDerivative2<T> log10()
Base 10 logarithm.
FieldUnivariateDerivative2<T> log1p()
Shifted natural logarithm.
FieldUnivariateDerivative2<T> multiply(double a)
'×' operator.
FieldUnivariateDerivative2<T> multiply(FieldUnivariateDerivative2<T> a)
Compute this × a.
FieldUnivariateDerivative2<T> multiply(int n)
Compute n × this.
FieldUnivariateDerivative2<T> multiply(T a)
'×' operator.
FieldUnivariateDerivative2<T> negate()
Returns the additive inverse of this element.
FieldUnivariateDerivative2<T> newInstance(double value)
Create an instance corresponding to a constant real value.
FieldUnivariateDerivative2<T> pow(double p)
Power operation.
static <T extends CalculusFieldElement<T>>FieldUnivariateDerivative2<T> pow(double a, FieldUnivariateDerivative2<T> x)
Compute ax where a is a double and x a FieldUnivariateDerivative2
FieldUnivariateDerivative2<T> pow(FieldUnivariateDerivative2<T> e)
Power operation.
FieldUnivariateDerivative2<T> pow(int n)
Integer power operation.
FieldUnivariateDerivative2<T> reciprocal()
Returns the multiplicative inverse of this element.
FieldUnivariateDerivative2<T> remainder(double a)
IEEE remainder operator.
FieldUnivariateDerivative2<T> remainder(FieldUnivariateDerivative2<T> a)
IEEE remainder operator.
FieldUnivariateDerivative2<T> remainder(T a)
IEEE remainder operator.
FieldUnivariateDerivative2<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
FieldUnivariateDerivative2<T> rootN(int n)
Nth root.
FieldUnivariateDerivative2<T> scalb(int n)
Multiply the instance by a power of 2.
FieldUnivariateDerivative2<T> sign()
Compute the sign of the instance.
FieldUnivariateDerivative2<T> sin()
Sine operation.
FieldSinCos<FieldUnivariateDerivative2<T>> sinCos()
Combined Sine and Cosine operation.
FieldUnivariateDerivative2<T> sinh()
Hyperbolic sine operation.
FieldSinhCosh<FieldUnivariateDerivative2<T>> sinhCosh()
Combined hyperbolic sine and sosine operation.
FieldUnivariateDerivative2<T> sqrt()
Square root.
FieldUnivariateDerivative2<T> subtract(double a)
'-' operator.
FieldUnivariateDerivative2<T> subtract(FieldUnivariateDerivative2<T> a)
Compute this - a.
FieldUnivariateDerivative2<T> subtract(T a)
'-' operator.
FieldUnivariateDerivative2<T> tan()
Tangent operation.
FieldUnivariateDerivative2<T> tanh()
Hyperbolic tangent operation.
T taylor(double delta)
Evaluate Taylor expansion a univariate derivative.
T taylor(T delta)
Evaluate Taylor expansion a univariate derivative.
FieldUnivariateDerivative2<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to a FieldDerivativeStructure.
FieldUnivariateDerivative2<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
FieldUnivariateDerivative2<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.
• ### Methods inherited from class org.hipparchus.analysis.differentiation.FieldUnivariateDerivative

getFreeParameters, getPartialDerivative
• ### Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
• ### Methods inherited from interface org.hipparchus.CalculusFieldElement

isFinite, isInfinite, isNaN, norm, round
• ### Methods inherited from interface org.hipparchus.FieldElement

isZero
• ### Constructor Detail

• #### FieldUnivariateDerivative2

public FieldUnivariateDerivative2(T f0,
T f1,
T f2)
Build an instance with values and derivative.
Parameters:
f0 - value of the function
f1 - first derivative of the function
f2 - second derivative of the function
• #### FieldUnivariateDerivative2

public FieldUnivariateDerivative2(FieldDerivativeStructure<T> ds)
throws MathIllegalArgumentException
Build an instance from a DerivativeStructure.
Parameters:
ds - derivative structure
Throws:
MathIllegalArgumentException - if either ds parameters is not 1 or ds order is not 2
• ### Method Detail

• #### newInstance

public FieldUnivariateDerivative2<T> newInstance(double value)
Create an instance corresponding to a constant real value.
Parameters:
value - constant real value
Returns:
instance corresponding to a constant real value
• #### getReal

public double getReal()
Get the real value of the number.
Returns:
real value
• #### getValue

public T getValue()
Get the value part of the univariate derivative.
Returns:
value part of the univariate derivative
• #### getDerivative

public T getDerivative(int n)
Get a derivative from the univariate derivative.
Specified by:
getDerivative in class FieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>>
Parameters:
n - derivation order (must be between 0 and getOrder(), both inclusive)
Returns:
nth derivative, or NaN if n is either negative or strictly larger than getOrder()
• #### getOrder

public int getOrder()
Get the derivation order.
Returns:
derivation order
• #### getFirstDerivative

public T getFirstDerivative()
Get the first derivative.
Returns:
first derivative
getValue()
• #### getValueField

public Field<T> getValueField()
Get the Field the value and parameters of the function belongs to.
Returns:
Field the value and parameters of the function belongs to
• #### toDerivativeStructure

public FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to a FieldDerivativeStructure.
Specified by:
toDerivativeStructure in class FieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>>
Returns:
derivative structure with same value and derivative as the instance

public FieldUnivariateDerivative2<T> add(T a)
'+' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this+a

public FieldUnivariateDerivative2<T> add(double a)
'+' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this+a

public FieldUnivariateDerivative2<T> add(FieldUnivariateDerivative2<T> a)
Compute this + a.
Parameters:
a - element to add
Returns:
a new element representing this + a
• #### subtract

public FieldUnivariateDerivative2<T> subtract(T a)
'-' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this-a
• #### subtract

public FieldUnivariateDerivative2<T> subtract(double a)
'-' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this-a
• #### subtract

public FieldUnivariateDerivative2<T> subtract(FieldUnivariateDerivative2<T> a)
Compute this - a.
Parameters:
a - element to subtract
Returns:
a new element representing this - a
• #### multiply

public FieldUnivariateDerivative2<T> multiply(T a)
'×' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this×a
• #### multiply

public FieldUnivariateDerivative2<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum
n × this = ∑i=1n this.
Parameters:
n - Number of times this must be added to itself.
Returns:
A new element representing n × this.
• #### multiply

public FieldUnivariateDerivative2<T> multiply(double a)
'×' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this×a
• #### multiply

public FieldUnivariateDerivative2<T> multiply(FieldUnivariateDerivative2<T> a)
Compute this × a.
Parameters:
a - element to multiply
Returns:
a new element representing this × a
• #### divide

public FieldUnivariateDerivative2<T> divide(T a)
'÷' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this÷a
• #### divide

public FieldUnivariateDerivative2<T> divide(double a)
'÷' operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this÷a
• #### divide

public FieldUnivariateDerivative2<T> divide(FieldUnivariateDerivative2<T> a)
Compute this ÷ a.
Parameters:
a - element to divide by
Returns:
a new element representing this ÷ a
• #### remainder

public FieldUnivariateDerivative2<T> remainder(T a)
IEEE remainder operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
• #### remainder

public FieldUnivariateDerivative2<T> remainder(double a)
IEEE remainder operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this - n × a where n is the closest integer to this/a
• #### remainder

public FieldUnivariateDerivative2<T> remainder(FieldUnivariateDerivative2<T> a)
IEEE remainder operator.
Parameters:
a - right hand side parameter of the operator
Returns:
this - n × a where n is the closest integer to this/a
• #### negate

public FieldUnivariateDerivative2<T> negate()
Returns the additive inverse of this element.
Returns:
the opposite of this.
• #### ceil

public FieldUnivariateDerivative2<T> ceil()
Get the smallest whole number larger than instance.
Returns:
ceil(this)
• #### floor

public FieldUnivariateDerivative2<T> floor()
Get the largest whole number smaller than instance.
Returns:
floor(this)
• #### rint

public FieldUnivariateDerivative2<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
Returns:
a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
• #### sign

public FieldUnivariateDerivative2<T> sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)
Returns:
-1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
• #### copySign

public FieldUnivariateDerivative2<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaN sign argument is treated as positive.
Parameters:
sign - the sign for the returned value
Returns:
the instance with the same sign as the sign argument
• #### copySign

public FieldUnivariateDerivative2<T> copySign(FieldUnivariateDerivative2<T> sign)
Returns the instance with the sign of the argument. A NaN sign argument is treated as positive.
Parameters:
sign - the sign for the returned value
Returns:
the instance with the same sign as the sign argument
• #### copySign

public FieldUnivariateDerivative2<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaN sign argument is treated as positive.
Parameters:
sign - the sign for the returned value
Returns:
the instance with the same sign as the sign argument
• #### getExponent

public int getExponent()
Return the exponent of the instance, removing the bias.

For double numbers of the form 2x, the unbiased exponent is exactly x.

Returns:
exponent for the instance, without bias
• #### scalb

public FieldUnivariateDerivative2<T> scalb(int n)
Multiply the instance by a power of 2.
Parameters:
n - power of 2
Returns:
this × 2n
• #### ulp

public FieldUnivariateDerivative2<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.

The ulp function is a step function, hence all its derivatives are 0.

Returns:
ulp(this)
Since:
2.0
• #### hypot

public FieldUnivariateDerivative2<T> hypot(FieldUnivariateDerivative2<T> y)
Returns the hypotenuse of a triangle with sides this and y - sqrt(this2 +y2) avoiding intermediate overflow or underflow.
• If either argument is infinite, then the result is positive infinity.
• else, if either argument is NaN then the result is NaN.
Parameters:
y - a value
Returns:
sqrt(this2 +y2)
• #### reciprocal

public FieldUnivariateDerivative2<T> reciprocal()
Returns the multiplicative inverse of this element.
Returns:
the inverse of this.
• #### compose

public FieldUnivariateDerivative2<T> compose(T g0,
T g1,
T g2)
Compute composition of the instance by a function.
Parameters:
g0 - value of the function at the current point (i.e. at g(getValue()))
g1 - first derivative of the function at the current point (i.e. at g'(getValue()))
g2 - second derivative of the function at the current point (i.e. at g''(getValue()))
Returns:
g(this)
• #### sqrt

public FieldUnivariateDerivative2<T> sqrt()
Square root.
Returns:
square root of the instance
• #### cbrt

public FieldUnivariateDerivative2<T> cbrt()
Cubic root.
Returns:
cubic root of the instance
• #### rootN

public FieldUnivariateDerivative2<T> rootN(int n)
Nth root.
Parameters:
n - order of the root
Returns:
nth root of the instance
• #### getField

public FieldUnivariateDerivative2Field<T> getField()
Get the Field to which the instance belongs.
Returns:
Field to which the instance belongs
• #### pow

public static <T extends CalculusFieldElement<T>> FieldUnivariateDerivative2<T> pow(double a,
FieldUnivariateDerivative2<T> x)
Compute ax where a is a double and x a FieldUnivariateDerivative2
Type Parameters:
T - the type of the function parameters and value
Parameters:
a - number to exponentiate
x - power to apply
Returns:
ax
• #### pow

public FieldUnivariateDerivative2<T> pow(double p)
Power operation.
Parameters:
p - power to apply
Returns:
thisp
• #### pow

public FieldUnivariateDerivative2<T> pow(int n)
Integer power operation.
Parameters:
n - power to apply
Returns:
thisn
• #### pow

public FieldUnivariateDerivative2<T> pow(FieldUnivariateDerivative2<T> e)
Power operation.
Parameters:
e - exponent
Returns:
thise
• #### exp

public FieldUnivariateDerivative2<T> exp()
Exponential.
Returns:
exponential of the instance
• #### expm1

public FieldUnivariateDerivative2<T> expm1()
Exponential minus 1.
Returns:
exponential minus one of the instance
• #### log

public FieldUnivariateDerivative2<T> log()
Natural logarithm.
Returns:
logarithm of the instance
• #### log1p

public FieldUnivariateDerivative2<T> log1p()
Shifted natural logarithm.
Returns:
logarithm of one plus the instance
• #### log10

public FieldUnivariateDerivative2<T> log10()
Base 10 logarithm.
Returns:
base 10 logarithm of the instance
• #### cos

public FieldUnivariateDerivative2<T> cos()
Cosine operation.
Returns:
cos(this)
• #### sin

public FieldUnivariateDerivative2<T> sin()
Sine operation.
Returns:
sin(this)
• #### sinCos

public FieldSinCos<FieldUnivariateDerivative2<T>> sinCos()
Combined Sine and Cosine operation.
Returns:
[sin(this), cos(this)]
• #### tan

public FieldUnivariateDerivative2<T> tan()
Tangent operation.
Returns:
tan(this)
• #### acos

public FieldUnivariateDerivative2<T> acos()
Arc cosine operation.
Returns:
acos(this)
• #### asin

public FieldUnivariateDerivative2<T> asin()
Arc sine operation.
Returns:
asin(this)
• #### atan

public FieldUnivariateDerivative2<T> atan()
Arc tangent operation.
Returns:
atan(this)
• #### atan2

public FieldUnivariateDerivative2<T> atan2(FieldUnivariateDerivative2<T> x)
Two arguments arc tangent operation.

Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages atan2, this method computes atan2(this, x), i.e. the instance represents the y argument and the x argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languages atan2 two-arguments arc tangent and puts x as its first argument.

Parameters:
x - second argument of the arc tangent
Returns:
atan2(this, x)
• #### cosh

public FieldUnivariateDerivative2<T> cosh()
Hyperbolic cosine operation.
Returns:
cosh(this)
• #### sinh

public FieldUnivariateDerivative2<T> sinh()
Hyperbolic sine operation.
Returns:
sinh(this)
• #### sinhCosh

public FieldSinhCosh<FieldUnivariateDerivative2<T>> sinhCosh()
Combined hyperbolic sine and sosine operation.
Returns:
[sinh(this), cosh(this)]
• #### tanh

public FieldUnivariateDerivative2<T> tanh()
Hyperbolic tangent operation.
Returns:
tanh(this)
• #### acosh

public FieldUnivariateDerivative2<T> acosh()
Inverse hyperbolic cosine operation.
Returns:
acosh(this)
• #### asinh

public FieldUnivariateDerivative2<T> asinh()
Inverse hyperbolic sine operation.
Returns:
asin(this)
• #### atanh

public FieldUnivariateDerivative2<T> atanh()
Inverse hyperbolic tangent operation.
Returns:
atanh(this)
• #### toDegrees

public FieldUnivariateDerivative2<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
Returns:
instance converted into degrees

public FieldUnivariateDerivative2<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
Returns:
• #### taylor

public T taylor(double delta)
Evaluate Taylor expansion a univariate derivative.
Parameters:
delta - parameter offset Δx
Returns:
value of the Taylor expansion at x + Δx
• #### taylor

public T taylor(T delta)
Evaluate Taylor expansion a univariate derivative.
Parameters:
delta - parameter offset Δx
Returns:
value of the Taylor expansion at x + Δx
• #### linearCombination

public FieldUnivariateDerivative2<T> linearCombination(T[] a,
FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
Parameters:
a - Factors.
b - Factors.
Returns:
Σi ai bi.
Throws:
MathIllegalArgumentException - if arrays dimensions don't match
• #### linearCombination

public FieldUnivariateDerivative2<T> linearCombination(FieldUnivariateDerivative2<T>[] a,
FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
Parameters:
a - Factors.
b - Factors.
Returns:
Σi ai bi.
• #### linearCombination

public FieldUnivariateDerivative2<T> linearCombination(double[] a,
FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.
Parameters:
a - Factors.
b - Factors.
Returns:
Σi ai bi.
• #### getPi

public FieldUnivariateDerivative2<T> getPi()
Get the Archimedes constant π.

Archimedes constant is the ratio of a circle's circumference to its diameter.

Returns:
Archimedes constant π
• #### equals

public boolean equals(Object other)
Test for the equality of two univariate derivatives.

univariate derivatives are considered equal if they have the same derivatives.

Overrides:
equals in class Object
Parameters:
other - Object to test for equality to this
Returns:
true if two univariate derivatives are equal
• #### hashCode

public int hashCode()
Get a hashCode for the univariate derivative.
Overrides:
hashCode in class Object
Returns:
a hash code value for this object