Class Binary64
- java.lang.Object
-
- java.lang.Number
-
- org.hipparchus.util.Binary64
-
- All Implemented Interfaces:
Serializable,Comparable<Binary64>,CalculusFieldElement<Binary64>,FieldElement<Binary64>
public class Binary64 extends Number implements CalculusFieldElement<Binary64>, Comparable<Binary64>
This class wraps adoublevalue in an object. It is similar to the standard classDouble, while also implementing theCalculusFieldElementinterface.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static Binary64NANThe constant value ofDouble.NaNas aBinary64.static Binary64NEGATIVE_INFINITYThe constant value ofDouble.NEGATIVE_INFINITYas aBinary64.static Binary64ONEThe constant value of1das aBinary64.static Binary64PIThe constant value of π as aBinary64.static Binary64POSITIVE_INFINITYThe constant value ofDouble.POSITIVE_INFINITYas aBinary64.static Binary64ZEROThe constant value of0das aBinary64.
-
Constructor Summary
Constructors Constructor Description Binary64(double x)Creates a new instance of this class.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Binary64abs()absolute value.Binary64acos()Arc cosine operation.Binary64acosh()Inverse hyperbolic cosine operation.Binary64add(double a)'+' operator.Binary64add(Binary64 a)Compute this + a.Binary64asin()Arc sine operation.Binary64asinh()Inverse hyperbolic sine operation.Binary64atan()Arc tangent operation.Binary64atan2(Binary64 x)Two arguments arc tangent operation.Binary64atanh()Inverse hyperbolic tangent operation.bytebyteValue()The current implementation performs casting to abyte.Binary64cbrt()Cubic root.Binary64ceil()Get the smallest whole number larger than instance.intcompareTo(Binary64 o)The current implementation returns the same value asnew Double(this.doubleValue()).compareTo(new Double(o.doubleValue()))Binary64copySign(double sign)Returns the instance with the sign of the argument.Binary64copySign(Binary64 sign)Returns the instance with the sign of the argument.Binary64cos()Cosine operation.Binary64cosh()Hyperbolic cosine operation.Binary64divide(double a)'÷' operator.Binary64divide(Binary64 a)Compute this ÷ a.doubledoubleValue()booleanequals(Object obj)Binary64exp()Exponential.Binary64expm1()Exponential minus 1.floatfloatValue()The current implementation performs casting to afloat.Binary64floor()Get the largest whole number smaller than instance.Binary64getAddendum()Get the addendum to the real value of the number.Field<Binary64>getField()Get theFieldto which the instance belongs.Binary64getPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.inthashCode()The current implementation returns the same value asnew Double(this.doubleValue()).hashCode()Binary64hypot(Binary64 y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.intintValue()The current implementation performs casting to aint.booleanisInfinite()Returnstrueifthisdouble precision number is infinite (Double.POSITIVE_INFINITYorDouble.NEGATIVE_INFINITY).booleanisNaN()Returnstrueifthisdouble precision number is Not-a-Number (NaN), false otherwise.booleanisZero()Check if an element is semantically equal to zero.Binary64linearCombination(double[] a, Binary64[] b)Compute a linear combination.Binary64linearCombination(double a1, Binary64 b1, double a2, Binary64 b2)Compute a linear combination.Binary64linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3)Compute a linear combination.Binary64linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3, double a4, Binary64 b4)Compute a linear combination.Binary64linearCombination(Binary64[] a, Binary64[] b)Compute a linear combination.Binary64linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2)Compute a linear combination.Binary64linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3)Compute a linear combination.Binary64linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3, Binary64 a4, Binary64 b4)Compute a linear combination.Binary64log()Natural logarithm.Binary64log10()Base 10 logarithm.Binary64log1p()Shifted natural logarithm.longlongValue()The current implementation performs casting to along.Binary64multiply(double a)'×' operator.Binary64multiply(int n)Compute n × this.Binary64multiply(Binary64 a)Compute this × a.Binary64negate()Returns the additive inverse ofthiselement.Binary64newInstance(double v)Create an instance corresponding to a constant real value.Binary64pow(double p)Power operation.Binary64pow(int n)Integer power operation.Binary64pow(Binary64 e)Power operation.Binary64reciprocal()Returns the multiplicative inverse ofthiselement.Binary64remainder(double a)IEEE remainder operator.Binary64remainder(Binary64 a)IEEE remainder operator.Binary64rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.Binary64rootN(int n)Nth root.Binary64scalb(int n)Multiply the instance by a power of 2.shortshortValue()The current implementation performs casting to ashort.Binary64sign()Compute the sign of the instance.Binary64sin()Sine operation.FieldSinCos<Binary64>sinCos()Combined Sine and Cosine operation.Binary64sinh()Hyperbolic sine operation.FieldSinhCosh<Binary64>sinhCosh()Combined hyperbolic sine and cosine operation.Binary64sqrt()Square root.Binary64square()Compute this × this.Binary64subtract(double a)'-' operator.Binary64subtract(Binary64 a)Compute this - a.Binary64tan()Tangent operation.Binary64tanh()Hyperbolic tangent operation.Binary64toDegrees()Convert radians to degrees, with error of less than 0.5 ULPBinary64toRadians()Convert degrees to radians, with error of less than 0.5 ULPStringtoString()The returnedStringis equal toDouble.toString(this.doubleValue())Binary64ulp()Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, norm, round
-
-
-
-
Field Detail
-
ZERO
public static final Binary64 ZERO
The constant value of0das aBinary64.
-
ONE
public static final Binary64 ONE
The constant value of1das aBinary64.
-
PI
public static final Binary64 PI
The constant value of π as aBinary64.
-
NEGATIVE_INFINITY
public static final Binary64 NEGATIVE_INFINITY
The constant value ofDouble.NEGATIVE_INFINITYas aBinary64.
-
POSITIVE_INFINITY
public static final Binary64 POSITIVE_INFINITY
The constant value ofDouble.POSITIVE_INFINITYas aBinary64.
-
NAN
public static final Binary64 NAN
The constant value ofDouble.NaNas aBinary64.
-
-
Method Detail
-
newInstance
public Binary64 newInstance(double v)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<Binary64>- Parameters:
v- constant real value- Returns:
- instance corresponding to a constant real value
-
getField
public Field<Binary64> getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<Binary64>- Returns:
Fieldto which the instance belongs
-
add
public Binary64 add(Binary64 a)
Compute this + a. The current implementation strictly enforcesthis.add(a).equals(new Binary64(this.doubleValue() + a.doubleValue())).- Specified by:
addin interfaceFieldElement<Binary64>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
public Binary64 subtract(Binary64 a)
Compute this - a. The current implementation strictly enforcesthis.subtract(a).equals(new Binary64(this.doubleValue() - a.doubleValue())).- Specified by:
subtractin interfaceCalculusFieldElement<Binary64>- Specified by:
subtractin interfaceFieldElement<Binary64>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
negate
public Binary64 negate()
Returns the additive inverse ofthiselement. The current implementation strictly enforcesthis.negate().equals(new Binary64(-this.doubleValue())).- Specified by:
negatein interfaceFieldElement<Binary64>- Returns:
- the opposite of
this.
-
square
public Binary64 square()
Description copied from interface:CalculusFieldElementCompute this × this.- Specified by:
squarein interfaceCalculusFieldElement<Binary64>- Returns:
- a new element representing this × this
-
multiply
public Binary64 multiply(Binary64 a)
Compute this × a. The current implementation strictly enforcesthis.multiply(a).equals(new Binary64(this.doubleValue() * a.doubleValue())).- Specified by:
multiplyin interfaceFieldElement<Binary64>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
multiply
public Binary64 multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \] The current implementation strictly enforcesthis.multiply(n).equals(new Binary64(n * this.doubleValue())).- Specified by:
multiplyin interfaceCalculusFieldElement<Binary64>- Specified by:
multiplyin interfaceFieldElement<Binary64>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
divide
public Binary64 divide(Binary64 a)
Compute this ÷ a. The current implementation strictly enforcesthis.divide(a).equals(new Binary64(this.doubleValue() / a.doubleValue())).- Specified by:
dividein interfaceCalculusFieldElement<Binary64>- Specified by:
dividein interfaceFieldElement<Binary64>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
reciprocal
public Binary64 reciprocal()
Returns the multiplicative inverse ofthiselement. The current implementation strictly enforcesthis.reciprocal().equals(new Binary64(1.0 / this.doubleValue())).- Specified by:
reciprocalin interfaceFieldElement<Binary64>- Returns:
- the inverse of
this.
-
byteValue
public byte byteValue()
The current implementation performs casting to abyte.
-
shortValue
public short shortValue()
The current implementation performs casting to ashort.- Overrides:
shortValuein classNumber
-
intValue
public int intValue()
The current implementation performs casting to aint.
-
longValue
public long longValue()
The current implementation performs casting to along.
-
floatValue
public float floatValue()
The current implementation performs casting to afloat.- Specified by:
floatValuein classNumber
-
doubleValue
public double doubleValue()
- Specified by:
doubleValuein classNumber
-
compareTo
public int compareTo(Binary64 o)
The current implementation returns the same value asnew Double(this.doubleValue()).compareTo(new Double(o.doubleValue()))- Specified by:
compareToin interfaceComparable<Binary64>- See Also:
Double.compareTo(Double)
-
isZero
public boolean isZero()
Check if an element is semantically equal to zero.The default implementation simply calls
equals(getField().getZero()). However, this may need to be overridden in some cases as due to compatibility withhashCode()some classes implementsequals(Object)in such a way that -0.0 and +0.0 are different, which may be a problem. It prevents for example identifying a diagonal element is zero and should be avoided when doing partial pivoting in LU decomposition.This implementation considers +0.0 and -0.0 to be equal.
- Specified by:
isZeroin interfaceFieldElement<Binary64>- Returns:
- true if the element is semantically equal to zero
- Since:
- 1.8
-
hashCode
public int hashCode()
The current implementation returns the same value asnew Double(this.doubleValue()).hashCode()- Overrides:
hashCodein classObject- See Also:
Double.hashCode()
-
toString
public String toString()
The returnedStringis equal toDouble.toString(this.doubleValue())- Overrides:
toStringin classObject- See Also:
Double.toString(double)
-
isInfinite
public boolean isInfinite()
Returnstrueifthisdouble precision number is infinite (Double.POSITIVE_INFINITYorDouble.NEGATIVE_INFINITY).- Specified by:
isInfinitein interfaceCalculusFieldElement<Binary64>- Returns:
trueifthisnumber is infinite
-
isNaN
public boolean isNaN()
Returnstrueifthisdouble precision number is Not-a-Number (NaN), false otherwise.- Specified by:
isNaNin interfaceCalculusFieldElement<Binary64>- Returns:
trueifthisisNaN
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<Binary64>- Returns:
- real value
-
getAddendum
public Binary64 getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real partrecovers the instance. This means that whene.getReal()is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())iseande.subtract(e.getReal())ise.getAddendum(). Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendumin interfaceCalculusFieldElement<Binary64>- Returns:
- real value
-
add
public Binary64 add(double a)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
subtract
public Binary64 subtract(double a)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
multiply
public Binary64 multiply(double a)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
divide
public Binary64 divide(double a)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
remainder
public Binary64 remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public Binary64 remainder(Binary64 a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<Binary64>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
public Binary64 abs()
absolute value.- Specified by:
absin interfaceCalculusFieldElement<Binary64>- Returns:
- abs(this)
-
ceil
public Binary64 ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<Binary64>- Returns:
- ceil(this)
-
floor
public Binary64 floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<Binary64>- Returns:
- floor(this)
-
rint
public Binary64 rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<Binary64>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public Binary64 sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<Binary64>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public Binary64 copySign(Binary64 sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<Binary64>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public Binary64 copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<Binary64>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
public Binary64 scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<Binary64>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
public Binary64 ulp()
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulpin interfaceCalculusFieldElement<Binary64>- Returns:
- ulp(this)
-
hypot
public Binary64 hypot(Binary64 y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<Binary64>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
sqrt
public Binary64 sqrt()
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<Binary64>- Returns:
- square root of the instance
-
cbrt
public Binary64 cbrt()
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<Binary64>- Returns:
- cubic root of the instance
-
rootN
public Binary64 rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<Binary64>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
pow
public Binary64 pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<Binary64>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public Binary64 pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<Binary64>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
public Binary64 pow(Binary64 e)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<Binary64>- Parameters:
e- exponent- Returns:
- thise
-
exp
public Binary64 exp()
Exponential.- Specified by:
expin interfaceCalculusFieldElement<Binary64>- Returns:
- exponential of the instance
-
expm1
public Binary64 expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<Binary64>- Returns:
- exponential minus one of the instance
-
log
public Binary64 log()
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<Binary64>- Returns:
- logarithm of the instance
-
log1p
public Binary64 log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<Binary64>- Returns:
- logarithm of one plus the instance
-
log10
public Binary64 log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<Binary64>- Returns:
- base 10 logarithm of the instance
-
cos
public Binary64 cos()
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<Binary64>- Returns:
- cos(this)
-
sin
public Binary64 sin()
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<Binary64>- Returns:
- sin(this)
-
sinCos
public FieldSinCos<Binary64> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<Binary64>- Returns:
- [sin(this), cos(this)]
-
tan
public Binary64 tan()
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<Binary64>- Returns:
- tan(this)
-
acos
public Binary64 acos()
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<Binary64>- Returns:
- acos(this)
-
asin
public Binary64 asin()
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<Binary64>- Returns:
- asin(this)
-
atan
public Binary64 atan()
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<Binary64>- Returns:
- atan(this)
-
atan2
public Binary64 atan2(Binary64 x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<Binary64>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
public Binary64 cosh()
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<Binary64>- Returns:
- cosh(this)
-
sinh
public Binary64 sinh()
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<Binary64>- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<Binary64> sinhCosh()
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<Binary64>- Returns:
- [sinh(this), cosh(this)]
-
tanh
public Binary64 tanh()
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<Binary64>- Returns:
- tanh(this)
-
acosh
public Binary64 acosh()
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<Binary64>- Returns:
- acosh(this)
-
asinh
public Binary64 asinh()
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<Binary64>- Returns:
- asin(this)
-
atanh
public Binary64 atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<Binary64>- Returns:
- atanh(this)
-
toDegrees
public Binary64 toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<Binary64>- Returns:
- instance converted into degrees
-
toRadians
public Binary64 toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<Binary64>- Returns:
- instance converted into radians
-
linearCombination
public Binary64 linearCombination(Binary64[] a, Binary64[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public Binary64 linearCombination(double[] a, Binary64[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public Binary64 linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Binary64 linearCombination(double a1, Binary64 b1, double a2, Binary64 b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Binary64 linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Binary64 linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Binary64 linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3, Binary64 a4, Binary64 b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Binary64 linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3, double a4, Binary64 b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Binary64>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public Binary64 getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<Binary64>- Returns:
- Archimedes constant π
-
-