Class FieldTuple<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.util.FieldTuple<T>
-
- Type Parameters:
T- the type of the field elements
- All Implemented Interfaces:
CalculusFieldElement<FieldTuple<T>>,FieldElement<FieldTuple<T>>
public class FieldTuple<T extends CalculusFieldElement<T>> extends Object implements CalculusFieldElement<FieldTuple<T>>
This class allows to perform the same computation of all components of a Tuple at once.- Since:
- 1.2
-
-
Constructor Summary
Constructors Constructor Description FieldTuple(T... x)Creates a new instance from its components.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldTuple<T>abs()absolute value.FieldTuple<T>acos()Arc cosine operation.FieldTuple<T>acosh()Inverse hyperbolic cosine operation.FieldTuple<T>add(double a)'+' operator.FieldTuple<T>add(FieldTuple<T> a)Compute this + a.FieldTuple<T>asin()Arc sine operation.FieldTuple<T>asinh()Inverse hyperbolic sine operation.FieldTuple<T>atan()Arc tangent operation.FieldTuple<T>atan2(FieldTuple<T> x)Two arguments arc tangent operation.FieldTuple<T>atanh()Inverse hyperbolic tangent operation.FieldTuple<T>cbrt()Cubic root.FieldTuple<T>ceil()Get the smallest whole number larger than instance.FieldTuple<T>copySign(double sign)Returns the instance with the sign of the argument.FieldTuple<T>copySign(FieldTuple<T> sign)Returns the instance with the sign of the argument.FieldTuple<T>cos()Cosine operation.FieldTuple<T>cosh()Hyperbolic cosine operation.FieldTuple<T>divide(double a)'÷' operator.FieldTuple<T>divide(FieldTuple<T> a)Compute this ÷ a.booleanequals(Object obj)FieldTuple<T>exp()Exponential.FieldTuple<T>expm1()Exponential minus 1.FieldTuple<T>floor()Get the largest whole number smaller than instance.FieldTuple<T>getAddendum()Get the addendum to the real value of the number.TgetComponent(int index)Get one component of the tuple.T[]getComponents()Get all components of the tuple.intgetDimension()Get the dimension of the tuple.Field<FieldTuple<T>>getField()Get theFieldto which the instance belongs.FieldTuple<T>getPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.inthashCode()FieldTuple<T>hypot(FieldTuple<T> y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldTuple<T>linearCombination(double[] a, FieldTuple<T>[] b)Compute a linear combination.FieldTuple<T>linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2)Compute a linear combination.FieldTuple<T>linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3)Compute a linear combination.FieldTuple<T>linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4)Compute a linear combination.FieldTuple<T>linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b)Compute a linear combination.FieldTuple<T>linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2)Compute a linear combination.FieldTuple<T>linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3)Compute a linear combination.FieldTuple<T>linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4)Compute a linear combination.FieldTuple<T>log()Natural logarithm.FieldTuple<T>log10()Base 10 logarithm.FieldTuple<T>log1p()Shifted natural logarithm.FieldTuple<T>multiply(double a)'×' operator.FieldTuple<T>multiply(int n)Compute n × this.FieldTuple<T>multiply(FieldTuple<T> a)Compute this × a.FieldTuple<T>negate()Returns the additive inverse ofthiselement.FieldTuple<T>newInstance(double value)Create an instance corresponding to a constant real value.FieldTuple<T>pow(double p)Power operation.FieldTuple<T>pow(int n)Integer power operation.FieldTuple<T>pow(FieldTuple<T> e)Power operation.FieldTuple<T>reciprocal()Returns the multiplicative inverse ofthiselement.FieldTuple<T>remainder(double a)IEEE remainder operator.FieldTuple<T>remainder(FieldTuple<T> a)IEEE remainder operator.FieldTuple<T>rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.FieldTuple<T>rootN(int n)Nth root.FieldTuple<T>scalb(int n)Multiply the instance by a power of 2.FieldTuple<T>sign()Compute the sign of the instance.FieldTuple<T>sin()Sine operation.FieldSinCos<FieldTuple<T>>sinCos()Combined Sine and Cosine operation.FieldTuple<T>sinh()Hyperbolic sine operation.FieldSinhCosh<FieldTuple<T>>sinhCosh()Combined hyperbolic sine and cosine operation.FieldTuple<T>sqrt()Square root.FieldTuple<T>square()Compute this × this.FieldTuple<T>subtract(double a)'-' operator.FieldTuple<T>subtract(FieldTuple<T> a)Compute this - a.FieldTuple<T>tan()Tangent operation.FieldTuple<T>tanh()Hyperbolic tangent operation.FieldTuple<T>toDegrees()Convert radians to degrees, with error of less than 0.5 ULPFieldTuple<T>toRadians()Convert degrees to radians, with error of less than 0.5 ULPFieldTuple<T>ulp()Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
FieldTuple
@SafeVarargs public FieldTuple(T... x)
Creates a new instance from its components.- Parameters:
x- components of the tuple
-
-
Method Detail
-
newInstance
public FieldTuple<T> newInstance(double value)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
value- constant real value- Returns:
- instance corresponding to a constant real value
-
getDimension
public int getDimension()
Get the dimension of the tuple.- Returns:
- dimension of the tuple
-
getComponent
public T getComponent(int index)
Get one component of the tuple.- Parameters:
index- index of the component, between 0 andgetDimension()- 1- Returns:
- value of the component
-
getComponents
public T[] getComponents()
Get all components of the tuple.- Returns:
- all components
-
getField
public Field<FieldTuple<T>> getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
Fieldto which the instance belongs
-
add
public FieldTuple<T> add(FieldTuple<T> a)
Compute this + a.- Specified by:
addin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
public FieldTuple<T> subtract(FieldTuple<T> a)
Compute this - a.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
subtractin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
negate
public FieldTuple<T> negate()
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the opposite of
this.
-
multiply
public FieldTuple<T> multiply(FieldTuple<T> a)
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
multiply
public FieldTuple<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
divide
public FieldTuple<T> divide(FieldTuple<T> a)
Compute this ÷ a.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
dividein interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
reciprocal
public FieldTuple<T> reciprocal()
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the inverse of
this.
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- real value
-
getAddendum
public FieldTuple<T> getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real partrecovers the instance. This means that whene.getReal()is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())iseande.subtract(e.getReal())ise.getAddendum(). Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendumin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- real value
-
add
public FieldTuple<T> add(double a)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
subtract
public FieldTuple<T> subtract(double a)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
multiply
public FieldTuple<T> multiply(double a)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
square
public FieldTuple<T> square()
Compute this × this.- Specified by:
squarein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- a new element representing this × this
-
divide
public FieldTuple<T> divide(double a)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
remainder
public FieldTuple<T> remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldTuple<T> remainder(FieldTuple<T> a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
public FieldTuple<T> abs()
absolute value.- Specified by:
absin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- abs(this)
-
ceil
public FieldTuple<T> ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ceil(this)
-
floor
public FieldTuple<T> floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- floor(this)
-
rint
public FieldTuple<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public FieldTuple<T> sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public FieldTuple<T> copySign(FieldTuple<T> sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public FieldTuple<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
public FieldTuple<T> scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
public FieldTuple<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulpin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ulp(this)
-
hypot
public FieldTuple<T> hypot(FieldTuple<T> y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
sqrt
public FieldTuple<T> sqrt()
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- square root of the instance
-
cbrt
public FieldTuple<T> cbrt()
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cubic root of the instance
-
rootN
public FieldTuple<T> rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
pow
public FieldTuple<T> pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public FieldTuple<T> pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
public FieldTuple<T> pow(FieldTuple<T> e)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
e- exponent- Returns:
- thise
-
exp
public FieldTuple<T> exp()
Exponential.- Specified by:
expin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential of the instance
-
expm1
public FieldTuple<T> expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential minus one of the instance
-
log
public FieldTuple<T> log()
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of the instance
-
log1p
public FieldTuple<T> log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of one plus the instance
-
log10
public FieldTuple<T> log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- base 10 logarithm of the instance
-
cos
public FieldTuple<T> cos()
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cos(this)
-
sin
public FieldTuple<T> sin()
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sin(this)
-
sinCos
public FieldSinCos<FieldTuple<T>> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sin(this), cos(this)]
-
tan
public FieldTuple<T> tan()
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tan(this)
-
acos
public FieldTuple<T> acos()
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acos(this)
-
asin
public FieldTuple<T> asin()
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atan
public FieldTuple<T> atan()
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atan(this)
-
atan2
public FieldTuple<T> atan2(FieldTuple<T> x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
public FieldTuple<T> cosh()
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cosh(this)
-
sinh
public FieldTuple<T> sinh()
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<FieldTuple<T>> sinhCosh()
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sinh(this), cosh(this)]
-
tanh
public FieldTuple<T> tanh()
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tanh(this)
-
acosh
public FieldTuple<T> acosh()
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acosh(this)
-
asinh
public FieldTuple<T> asinh()
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atanh
public FieldTuple<T> atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atanh(this)
-
toDegrees
public FieldTuple<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into degrees
-
toRadians
public FieldTuple<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into radians
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldTuple<T> linearCombination(double[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public FieldTuple<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- Archimedes constant π
-
-