Interface UnscentedProcess<T extends Measurement>
-
- Type Parameters:
T- the type of the measurements
public interface UnscentedProcess<T extends Measurement>Unscented process that can be estimated by aUnscentedKalmanFilter.This interface must be implemented by users to represent the behavior of the process to be estimated
- Since:
- 2.2
- See Also:
UnscentedKalmanFilter,UnscentedProcess
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description UnscentedEvolutiongetEvolution(double previousTime, RealVector[] sigmaPoints, T measurement)Get the state evolution between two times.RealVectorgetInnovation(T measurement, RealVector predictedMeasurement, RealVector predictedState, RealMatrix innovationCovarianceMatrix)Get the innovation brought by a measurement.RealVector[]getPredictedMeasurements(RealVector[] predictedSigmaPoints, T measurement)Get the state evolution between two times.RealMatrixgetProcessNoiseMatrix(double previousTime, RealVector predictedState, T measurement)Get the process noise covariance corresponding to the state evolution between two times.
-
-
-
Method Detail
-
getEvolution
UnscentedEvolution getEvolution(double previousTime, RealVector[] sigmaPoints, T measurement)
Get the state evolution between two times.- Parameters:
previousTime- time of the previous statesigmaPoints- sigma pointsmeasurement- measurement to process- Returns:
- states evolution
-
getProcessNoiseMatrix
RealMatrix getProcessNoiseMatrix(double previousTime, RealVector predictedState, T measurement)
Get the process noise covariance corresponding to the state evolution between two times.- Parameters:
previousTime- time of the previous statepredictedState- predicted statemeasurement- measurement to process- Returns:
- states evolution
-
getPredictedMeasurements
RealVector[] getPredictedMeasurements(RealVector[] predictedSigmaPoints, T measurement)
Get the state evolution between two times.- Parameters:
predictedSigmaPoints- predicted state sigma pointsmeasurement- measurement to process- Returns:
- predicted measurement sigma points
-
getInnovation
RealVector getInnovation(T measurement, RealVector predictedMeasurement, RealVector predictedState, RealMatrix innovationCovarianceMatrix)
Get the innovation brought by a measurement.- Parameters:
measurement- measurement to processpredictedMeasurement- predicted measurementpredictedState- predicted stateinnovationCovarianceMatrix- innovation covariance matrix- Returns:
- innovation brought by a measurement, may be null if measurement should be rejected
-
-